

# Lecture 09: Distributed Machine Learning for Training and Inference

#### **Some Notes**

- Project proposals have been graded, and feedback has been posted.
- Lab 2 grades will be released this weekend.
- Lab 3 is due in two weeks.
- We'll also hold a round of project meetings to check on each team's progress.
- Change on Course Schedule



#### Recap

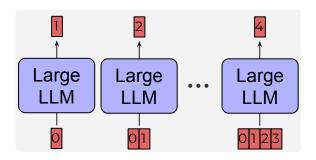
- Efficient training of DNNs
  - Efficient computing
  - Efficient storage
- Parameter efficient finetuning
- Speculative Decoding



#### **Topics**

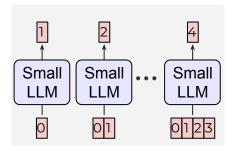
- Speculative Decoding (Continue)
- Distributed DNN Training
- Distributed DNN Inference
- Federated Learning





**Accurate but slow** 

$$T_{tot} = NT_{p,1}$$

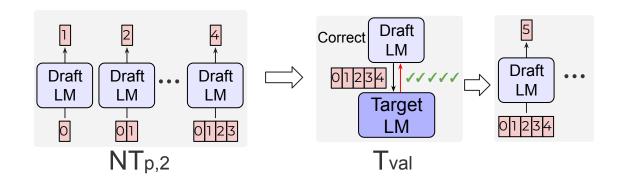


Fast but inaccurate

$$T_{tot} = NT_{p,2}$$

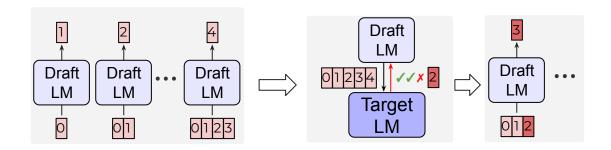
Speculative decoding enables lossless token generation with low latency.





$$T_{tot} = NT_{p,2} + T_{val} < NT_{p,1}$$

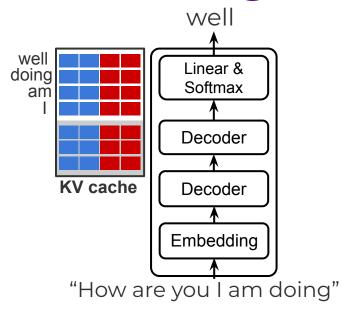


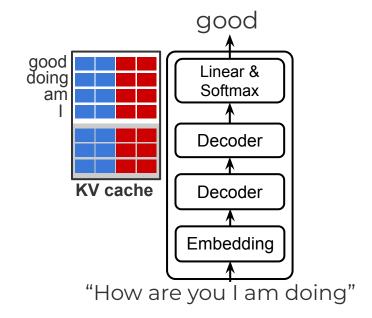


- If the token is incorrect, the target model provides the correct token to the draft model to help it generate subsequent tokens more accurately.
- If the amount of tokens that pass the verification is too low, then it is possible that speculative decoding is slower than autoregressive baseline.



#### **LLM Decoding**





• We can simply select the token with the highest score. But better results are achieved if the model considers other words as well. So a better strategy is to sample a word from the entire list using the score as the probability of selecting that word.



- To increase the diversity of the LLM output, a better strategy is to sample a word from the entire list using the score as the probability of selecting that word.
- Let p(x), q(x) denote the probability density function specified by the target and draft LLM
- To sample  $x \sim p(x)$ , we instead sample  $x \sim q(x)$ , keeping it if  $q(x) \le p(x)$ , and in case q(x) > p(x) we reject the sample with probability 1 p(x)/q(x) and sample x again from an adjusted distribution p'(x) = norm(max(0, p(x) q(x))) instead.



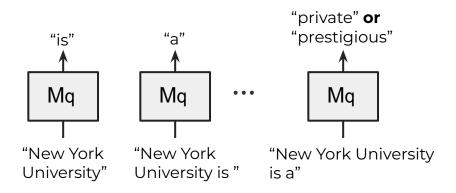
 Speculative decoding does not save computation, but greatly reduce the memory traffic by reducing the number of memory reads, further reducing the overall latency.

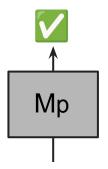
#### Algorithm 1 SpeculativeDecodingStep

```
Inputs: M_p, M_q, prefix.
\triangleright Sample \gamma guesses x_{1,...,\gamma} from M_q autoregressively.
for i=1 to \gamma do
   q_i(x) \leftarrow M_q(prefix + [x_1, \dots, x_{i-1}])
   x_i \sim q_i(x)
end for
\triangleright Run M_p in parallel.
p_1(x), \ldots, p_{\gamma+1}(x) \leftarrow
      M_p(prefix), \ldots, M_p(prefix + [x_1, \ldots, x_{\gamma}])
\triangleright Determine the number of accepted guesses n.
r_1 \sim U(0,1), \ldots, r_{\gamma} \sim U(0,1)
n \leftarrow \min(\{i-1 \mid 1 \le i \le \gamma, r_i > \frac{p_i(x)}{q_i(x)}\} \cup \{\gamma\})
\triangleright Adjust the distribution from M_p if needed.
p'(x) \leftarrow p_{n+1}(x)
if n < \gamma then
   p'(x) \leftarrow norm(max(0, p_{n+1}(x) - q_{n+1}(x)))
end if
\triangleright Return one token from M_p, and n tokens from M_q.
t \sim p'(x)
return prefix + [x_1, \ldots, x_n, t]
```



#### SpecInfer





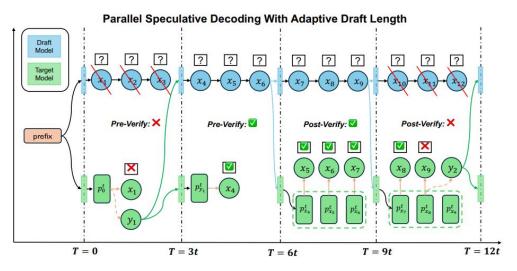
"New York University is a private research university"

#### or

"New York University is a prestigious research university"



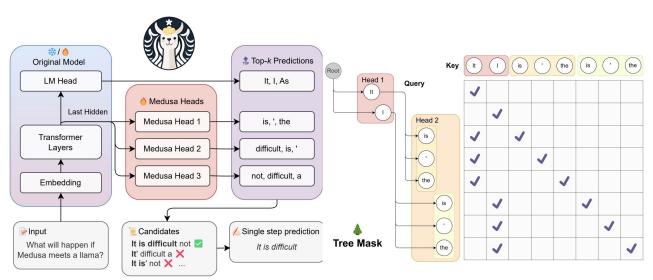
## **Parallel Speculative Decoding**



- PEARL is a parallel inference framework based on speculative decoding which utilizes pre-verify and post-verify to achieve adaptive draft length.
- The draft model continues to decode during the verification stage.
- If the verification fails, the windows size will become 1 in the next cycle.



#### Medusa



 Adding extra decoding heads to predict multiple subsequent tokens in parallel.

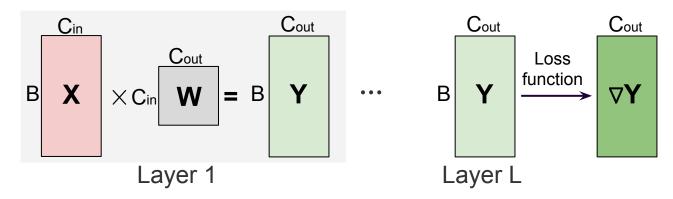


#### **Topics**

- Speculative Decoding (Continue)
- Distributed DNN Training
- Distributed DNN Inference
- Federated Learning



#### Forward Pass for Linear Layer



B: batch size

Cin: input channels

Cout: output channels

X: input maps

**W**: weight filters

Y: output maps

 The fully-connected layer during the forward propagation can be converted into matrix multiplications.



#### **Backward Pass for Linear Layer**

#### **Weight Gradient Computation**

# 

#### **Data Gradient Computation**

$$B \bigvee_{\nabla \mathbf{Y}} \times C_{\text{out}} \bigvee_{\mathbf{W}^{\mathsf{T}}} = B \bigvee_{\nabla \mathbf{X}}$$

X: input maps **∇X**: input gradient

**W**: weight filters **∇W**: weight gradient

Y: output maps

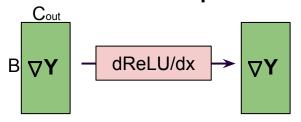
**∇Y**: output gradient

DNN backward propagation involves two matrix multiplications



#### **Backward Pass for Linear Layer**

#### **Data Gradient Computations**



#### **Weight Gradient Updates**

$$C_{in} \boxed{\mathbf{W}} - \eta \times \nabla \mathbf{W} = \boxed{\mathbf{W'}}$$

X: input maps

**W**: weight filters

Y: output maps

**∇X**: input gradient

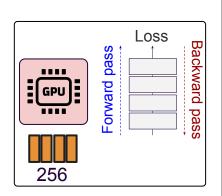
**∇W**: weight gradient

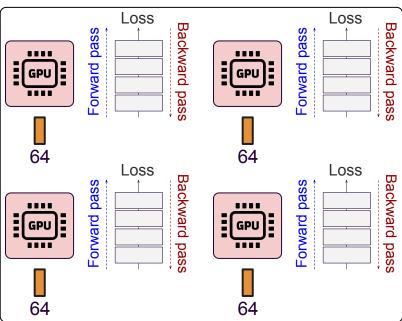
**∀Y**: output gradient

DNN backward propagation involves two matrix multiplications



#### Two Types of Parallelism





- Data is partitioned and allocated equally among the GPUs.
- Each GPU will process independently.



#### Distributed DNN Training: Data Parallelism

- To train DNN in a distributed fashion, we need to batchify the training datasets.
- Assume a batch size of b∈B, x denotes a batch of training dataset.
- Let η represent the learning rate. wt represents the weight at t.
- We assume that the data will be distributed in an independent and identically distributed (IID) fashion.

$$L(w) = \frac{1}{|X|} \sum_{x \in X} l(x, w)$$
  $w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$ 

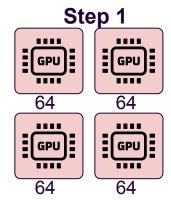
Loss function

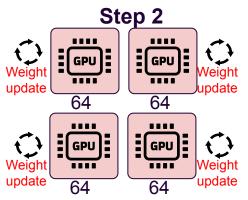
Weight update



#### **Parameter Server**

 A parameter server is a distributed system used to manage and synchronize the parameters (weights) of a machine learning model during training, especially in large-scale and distributed training scenarios.

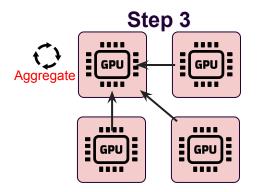


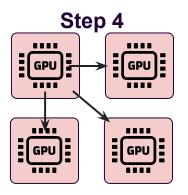


A total batch size of 256



#### **Parameter Server**

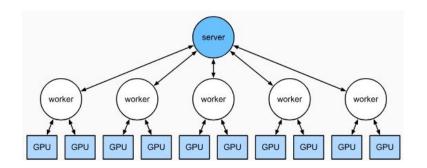


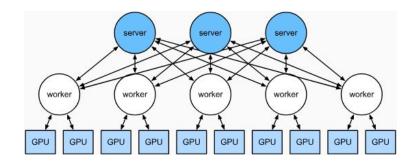


- Total amount of communication: 2(N-1)G.
- N is the number of nodes, G is the size of the weight gradient.
- If a worker node fails, other nodes can continue training without significant disruption. But PS scheme is not scalable, the central node can not handle all the servers, as the number of nodes increases.



#### **Parameter Server**





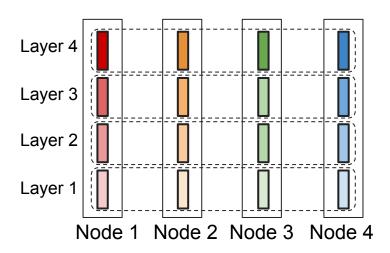
- To improve performance, we can deploy multiple parameter servers as backup nodes
- However, this approach introduces additional computation and communication overhead.



#### **All Reduce**

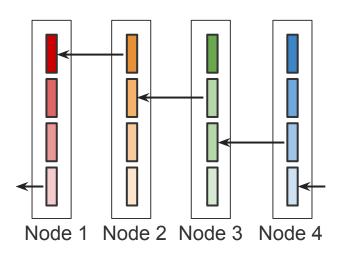
- All-reduce is a communication operation widely used in distributed deep neural network (DNN) training to synchronize and aggregate data across multiple computing nodes or devices.
- Detailed training steps:
  - **Forward Pass:** Each node (e.g., GPU) computes the forward pass of the neural network independently using its local mini-batch of data.
  - Backward Pass: Each node computes the gradients of the loss with respect to the model parameters.
  - All-Reduce Step: The gradients from all nodes are summed together using the all-reduce operation. This summed gradient is then broadcast to all nodes.
  - Parameter Update: Each node updates its local copy of the model parameters using the aggregated gradients.





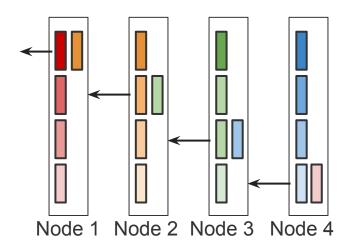
- Assume a neural network with four layers.
- Each node has been assigned with an equivalent amount of training dataset.
- All the nodes have finished training using their own local training dataset.

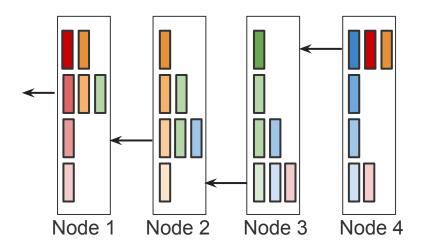




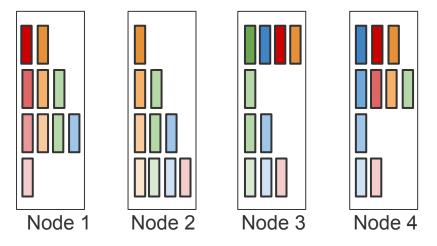
- Nodes are arranged in a ring topology, and each node passes a portion of its data to its neighbor in a circular fashion. This continues until all nodes have the complete reduced data.
- Each node has identical amounts of workload.





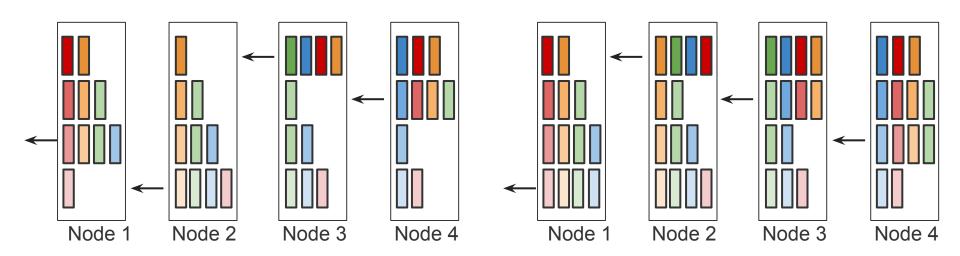




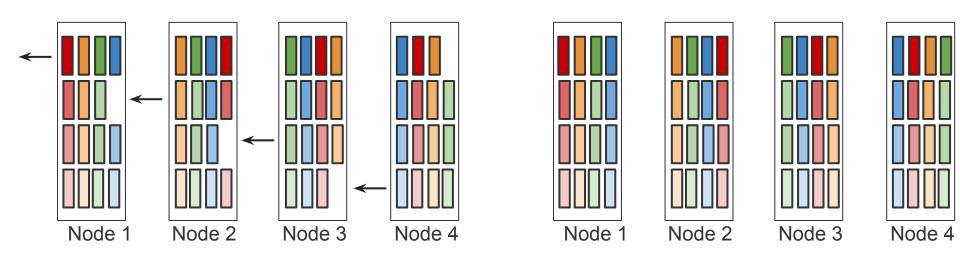


The end of share-reduce phase.





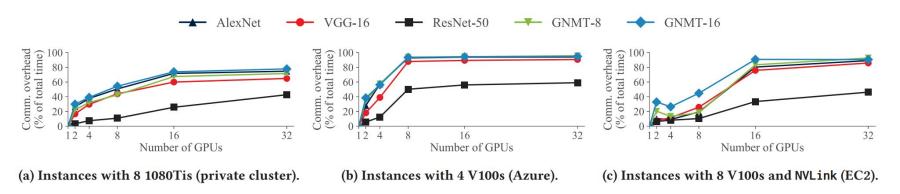




- Total amount of communication: 2(N-1)G.
- N is the number of nodes, G is the size of the weight gradient.



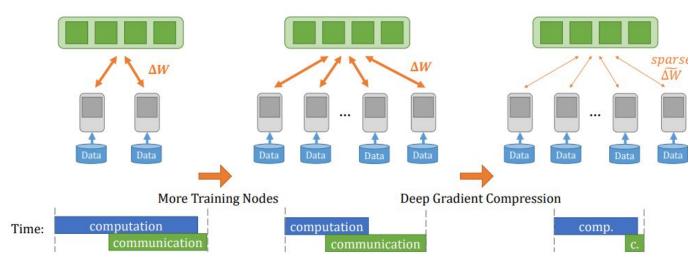
#### Model Parallelism: PipeDream



- The communication overhead for many of these models is high despite using multi-GPU servers.
- Applications distributed across multi-GPU servers are bottlenecked by slower inter-server links, as
  evidenced by communication overheads spiking and then plateauing when training scales out to multiple
  servers.



#### **Communication Reduction for Distributed Training**



- We reduce the communication bandwidth by sending only the important gradients (magnitude > thres).
- The accumulated weight gradient of each layer is transmitted only when its value is larger than a threshold.



#### **Communication Reduction for Distributed Training**

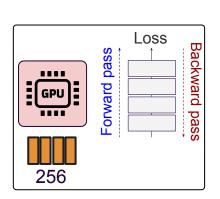
- The gradient is collected locally, only gradient with high magnitude are sent to the central server for model updating.
- Run-length encoding is utilized to compress the sparse gradient.

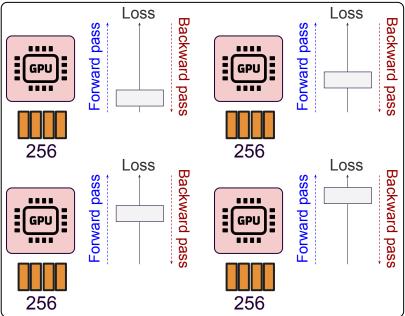
#### **Algorithm 1** Gradient Sparsification on node k

```
Input: dataset \chi
Input: minibatch size b per node
Input: the number of nodes N
Input: optimization function SGD
Input: init parameters w = \{w[0], w[1], \cdots, w[M]\}
 1: G^k \leftarrow 0
 2: for t = 0, 1, \cdots do
         G_t^k \leftarrow G_{t-1}^k
         for i=1,\cdots,b do
               Sample data x from \chi
              G_t^k \leftarrow G_t^k + \frac{1}{Nh} \nabla f(x; w_t)
         end for
          for j = 0, \dots, M do
               Select threshold: thr \leftarrow s\% of |G_t^k[j]|
              Mask \leftarrow \left| G_t^k[j] \right| > thr
10:
               \widetilde{G}_t^k[j] \leftarrow G_t^k[j] \odot Mask
               G_t^k[j] \leftarrow G_t^k[j] \odot \neg Mask
13:
          end for
          All-reduce G_t^k: G_t \leftarrow \sum_{k=1}^N encode(\widetilde{G}_t^k)
          w_{t+1} \leftarrow SGD\left(w_t, G_t\right)
16: end for
```



#### Two Types of Parallelism

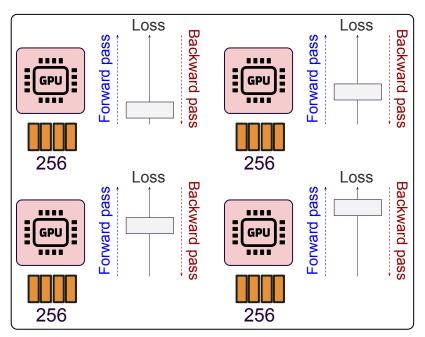




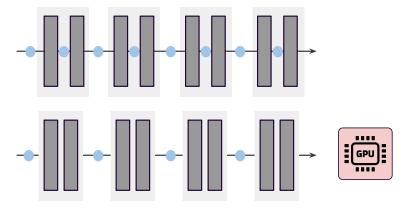
- Data is partitioned and allocated equally among the GPUs.
- Each GPU will process independently.



#### Distributed DNN Training: Model Parallelism



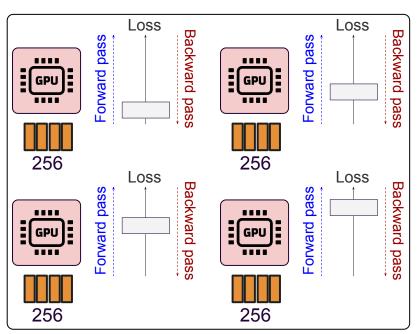
• The peak memory also becomes smaller by N times, where N is the number of devices.

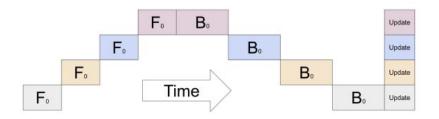


 The peak memory usage can be further reduced by buffering only the inputs of each layer block and recomputing the intermediate results when needed.



# **Underutilization During Training**

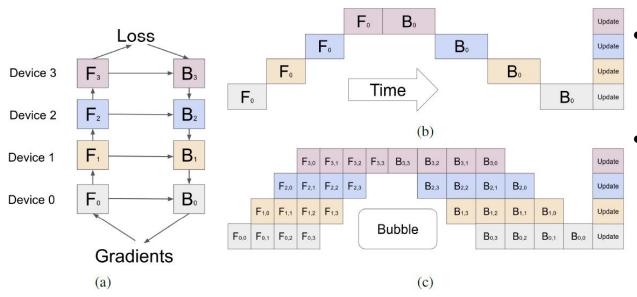




 GPU resources are often underutilized during training, primarily due to the overhead and inefficiencies introduced by model parallelism in the DNN training process.



#### Distributed DNN Training: Model Parallelism



- The naive model parallelism strategy leads to severe under-utilization due to the sequential dependency of the network.
- GPipe first divides every mini-batch of size N into M equal micro-batches, enabling different accelerators to work on different micro-batches simultaneously.

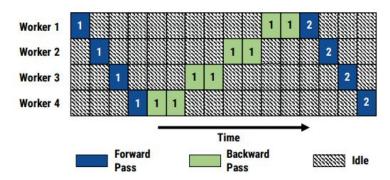


#### **Evaluation Results**

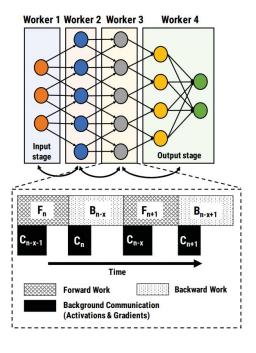
| TPU    | AmoebaNet |      |      | Transformer |      |     |  |
|--------|-----------|------|------|-------------|------|-----|--|
| K =    | 2         | 4    | 8    | 2           | 4    | 8   |  |
| M = 1  | 1         | 1.13 | 1.38 | 1           | 1.07 | 1.3 |  |
| M = 4  | 1.07      | 1.26 | 1.72 | 1.7         | 3.2  | 4.8 |  |
| M = 32 | 1.21      | 1.84 | 3.48 | 1.8         | 3.4  | 6.3 |  |

 Gpipe achieves different levels of acceleration under different number of devices and number of microbatches.

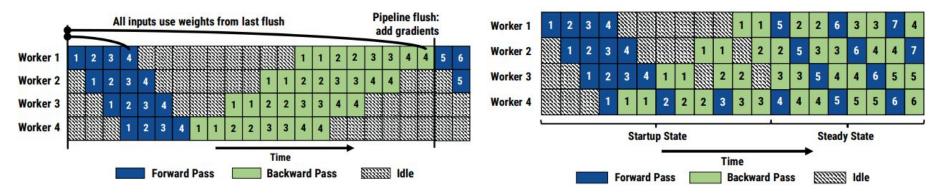




 It will be beneficial to pipeline-parallel assignment and achieve temporal overlap of computation and activation / gradient communication.

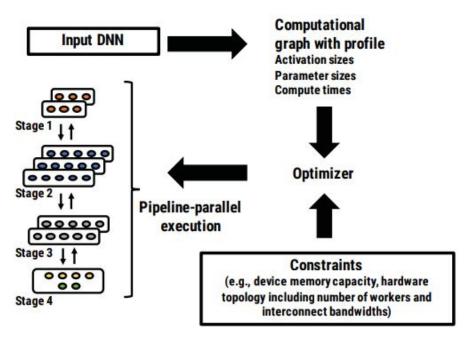






 In this paper, we propose PipeDream, a system that uses Pipeline to enable faster DNN training by combining intra-batch parallelism with inter-batch parallelization.



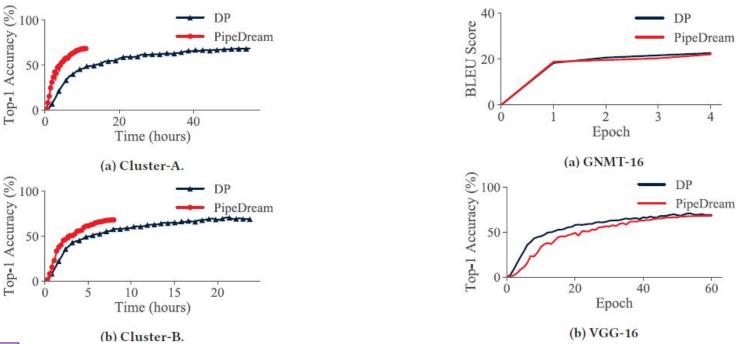


- PipeDream's automated mechanism to partition DNN layers into stages.
- PipeDream first profiles the input DNN, to get estimates for each layer's compute time and output size.
- Using these estimates, PipeDream's optimizer partitions layers across available machines, which is then executed by PipeDream's runtime.



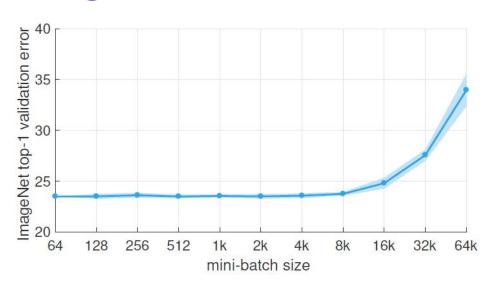
| Task                    | Model          | Dataset            | Accuracy<br>Threshold | # Servers × # GPUs<br>per server (Cluster) | PipeDream<br>Config | Speedup over DP |               |
|-------------------------|----------------|--------------------|-----------------------|--------------------------------------------|---------------------|-----------------|---------------|
|                         |                |                    |                       |                                            |                     | Epoch time      | TTA           |
| Image<br>Classification | VGG-16 [48]    | ImageNet [44]      | 68% top-1             | 4x4 (A)                                    | 15-1                | 5.28×           | 5.28×         |
|                         |                |                    |                       | 2x8 (B)                                    | 15-1                | 2.98×           | 2.46×         |
|                         | ResNet-50 [26] | ImageNet [44]      | 75.9% top-1           | 4x4 (A)                                    | 16                  | 1×              | 1×            |
|                         |                |                    |                       | 2x8 (B)                                    | 16                  | 1×              | $1 \times$    |
|                         | AlexNet [37]   | Synthetic Data     | N/A                   | 4x4 (A)                                    | 15-1                | 4.92×           | N/A           |
|                         |                |                    |                       | 2x8 (B)                                    | 15-1                | $2.04 \times$   | N/A           |
| Translation             | GNMT-16 [55]   | WMT16 EN-De        | 21.8 BLEU             | 1x4 (A)                                    | Straight            | 1.46×           | 2.2×          |
|                         |                |                    |                       | 4x4 (A)                                    | Straight            | $2.34 \times$   | 2.92×         |
|                         |                |                    |                       | 2x8 (B)                                    | Straight            | 3.14×           | $3.14 \times$ |
|                         | GNMT-8 [55]    | WMT16 EN-De        | 21.8 BLEU             | 1x4 (A)                                    | Straight            | 1.5×            | 1.5×          |
|                         |                |                    |                       | 3x4 (A)                                    | Straight            | 2.95×           | 2.95×         |
|                         |                |                    |                       | 2x8 (B)                                    | 16                  | 1×              | 1×            |
| Language Model          | AWD LM [40]    | Penn Treebank [41] | 98 perplexity         | 1x4 (A)                                    | Straight            | 4.25×           | 4.25×         |
| Video Captioning        | S2VT [54]      | MSVD [11]          | 0.294 METEOR          | 4x1 (C)                                    | 2-1-1               | 3.01×           | 3.01×         |







Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." *Proceedings of the 27th ACM symposium on operating systems principles.* 2019.



- For all minibatch sizes we set the learning rate as a linear function of the minibatch size and apply a simple warmup phase for the first few epochs of training.
- Using this simple approach, accuracy of our models is invariant to minibatch size (up to an 8k minibatch size).
- This enables a linear reduction in training time with 90% efficiency as we scale to large minibatch sizes, allowing us to train an accurate 8k minibatch ResNet-50 model in 1 hour on 256 GPUs.



- Our goal is to use large minibatches in place of small minibatches while maintaining training and generalization accuracy.
  - CNNs typically use batch sizes ranging from 64 to 1K.
  - BERT models employ 8K-32K global batches with the LAMB optimizer and layerwise adaptive scaling.
  - Large language models (LLMs) are trained in large-scale distributed settings with batch sizes of 8K–64K tokens per step.

• 
$$L(w) = \frac{1}{|X|} \sum_{x \in X} l(x, w) \quad w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$$



• **Linear Scaling Rule**: When the minibatch size is multiplied by k, multiply the learning rate by k.

$$w_{t+k} = w_t - \eta \frac{1}{n} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x, w_{t+j})$$
  $\hat{w}_{t+1} = w_t - \hat{\eta} \frac{1}{kn} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x, w_t)$ 

• As the batch size increases, the number of iterations reduces, we need to increase the learning rate. If  $\nabla l(x, w_t) \approx \nabla l(x, w_{t+j})$ , then the two equations are equivalent.



- At the start of training, model parameters are usually randomly initialized and uncalibrated. A high learning rate at this point can cause large, erratic gradient updates that push parameters into unstable regions, leading to exploding losses or divergence.
- We start from a learning rate of η and increment it by a constant amount at each iteration such that it reaches kη after 5 epochs. After the warm up, we go back to the original learning rate schedule.

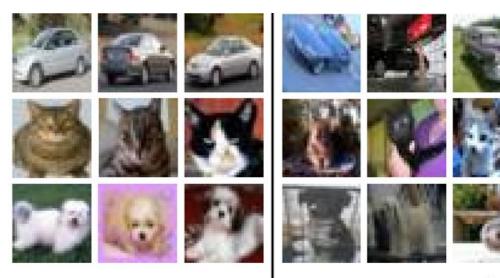


## **Topics**

- Speculative Decoding (Continue)
- Distributed DNN Training
- Distributed DNN Inference
- Federated Learning



## **BranchyNet**



- Data samples are not equal in their recognition difficulties.
- For the easy samples, they only needs to be processed with a few layers before generating the correct results.

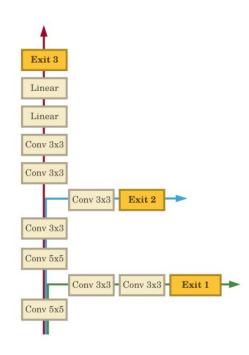
CIFAR10-Easy

CIFAR10-Hard



## **BranchyNet**

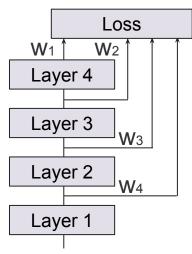
- During Inference, a confidence score is computed at each exit point, if greater than a predefined threshold, then the output is computed locally, leading to a faster inference.
- The confidence score is defined as:  $\operatorname{entropy}(\boldsymbol{y}) = \sum_{c \in \mathcal{C}} y_c \log y_c,$



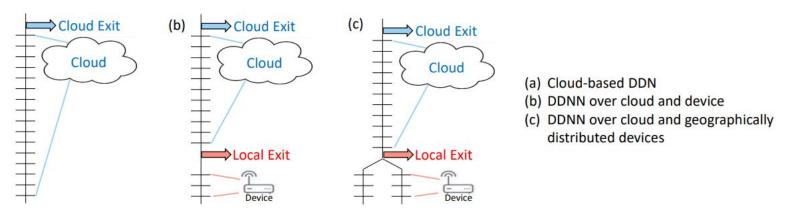
## **BranchyNet**

 To train the Branchy-style DNN, we can sum the cross-entropy loss at each local exit points, and train them jointly.

$$L_{ ext{branchynet}}(\hat{m{y}}, m{y}; heta) = \sum_{n=1}^{N} w_n L(\hat{m{y}}_{ ext{exit}_n}, m{y}; heta)$$



# Distributed Deep Neural Networks over the Cloud, the Edge and End Devices

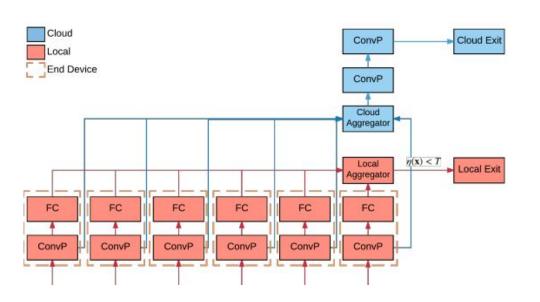


 We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices.



Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017. Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH Computer Architecture News 45.1 (2017): 615-629.

#### **DDNN**

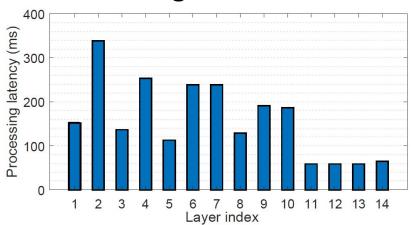


- Each edge device is implemented with a local DNN for local inference.
- The results from each local DNN is first aggregated locally.
- If the local exit is not confident, the activation output after the last convolutional layer from each end device is sent to the cloud aggregator for further processing.



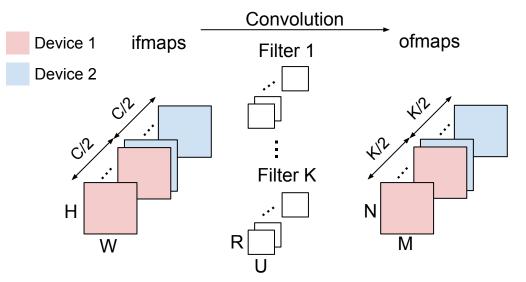
Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017. Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH Computer Architecture News 45.1 (2017): 615-629.

#### **Processing time for VGG16**



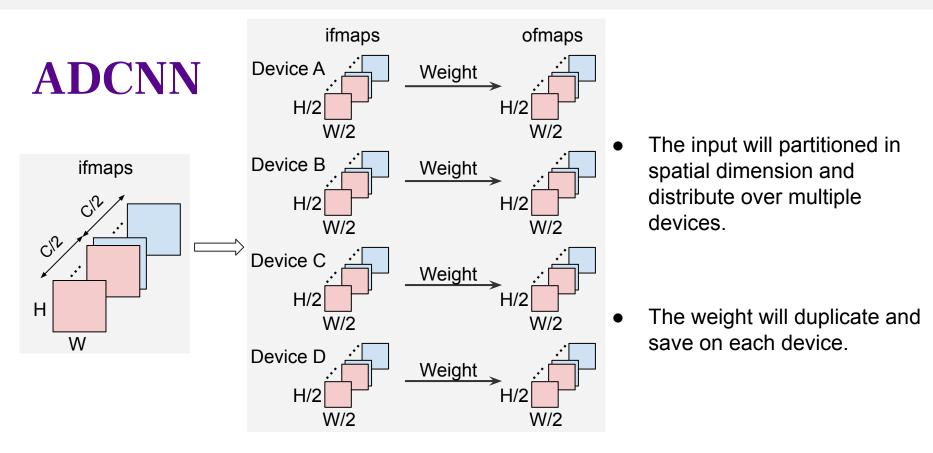
• Earlier layers take much longer to process than the later layers.



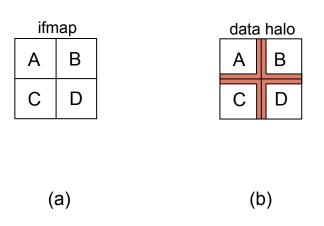


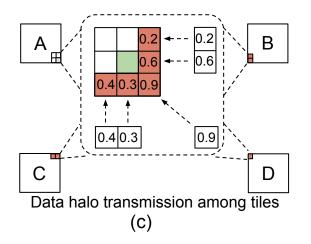
 In channelwise partition, each node needs to exchange their partially accumulated output feature maps to produce final output feature maps, which leads to a significant communication overhead.





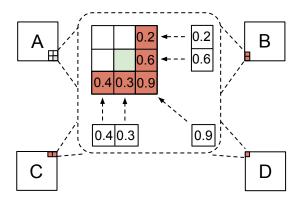




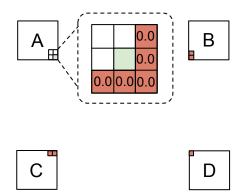


In spatial partition, each tile needs to transmit their data halo in order to compute the correct result.





**Normal Spatial Partition** 

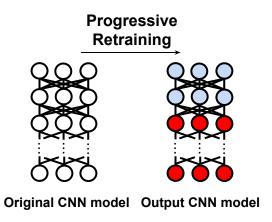


Fully Decomposable Spatial Partition (FDSP)

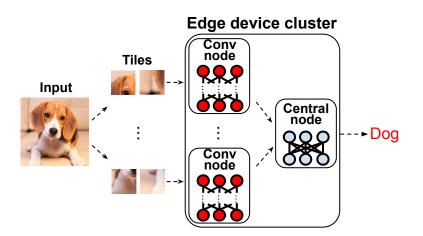
The cross-tile information transfer can be eliminated by padding the edge pixels with zeros.



#### Step 1



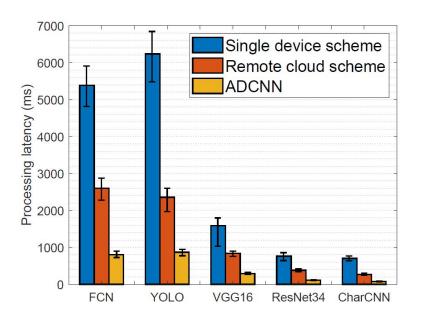
#### Step 2





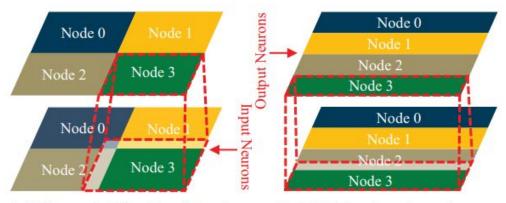
#### **Evaluation Results**

- We implement ADCNN system with nine identical Raspberry Pi devices which simulate the edge devices. Among these nine devices, eight are used as Conv nodes, and the rest one is used as the Central node.
- Baselines:
  - Single device scheme
  - Remote cloud scheme
- ADCNN decreases the average processing latency by 6.68x and 4.42x, respectively.





#### **MoDNN**



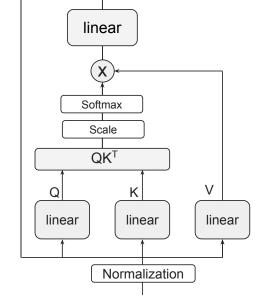


(b) BODP for 4 worker nodes.



#### Distributed Inference for Transformer

- Partitioning across dimension L requires all-reduce operation for QK<sup>T</sup> computation.
- Partitioning across dimension E (headwise partition) is better:
  - Q, K, V tensors are broken into multiple components along the embedding dimension.
    - $\blacksquare$  (B,L,E)  $\bigstar$  (E $\bigstar$ E)  $\rightarrow$  (B $\bigstar$ L $\bigstar$ E)
    - $\blacksquare \quad (\mathsf{B},\mathsf{L},\mathsf{E}) \to (\mathsf{B},\,\mathsf{M},\,\mathsf{L},\,\mathsf{E}/\mathsf{M}) \ \to (\mathsf{B},\,\mathsf{M}\,,\,\mathsf{L},\,\mathsf{D})\,,\,\mathsf{where}\\ \mathsf{D}{=}\mathsf{E}/\mathsf{M}$
  - All the following operations can be performed independently over each head M.
    - $\blacksquare \qquad \mathsf{QK}^{\top} \rightarrow (\mathsf{B}, \, \mathsf{M}, \, \mathsf{L} \bigstar \, \mathsf{D}) \, \bigstar \, (\mathsf{B}, \, \mathsf{M}, \, \mathsf{D} \bigstar \, \mathsf{L}) \rightarrow \, (\mathsf{B}, \, \mathsf{M}, \, \mathsf{L} \bigstar \, \mathsf{L})$
    - Softmax(QK $^{\top}$ )  $\rightarrow$  (B, M, L $\!\!\!*$ L)
    - Softmax(QK $^{\top}$ ) **\*** V  $\rightarrow$  (B, M, L**\***L) **\*** (B, M, L**\***D)  $\rightarrow$  (B, M, L**\***D)  $\rightarrow$  (B**\***L**\***E)





## **Topics**

- Speculative Decoding (Continue)
- Distributed DNN Training
- Distributed DNN Inference
- Federated Learning



## **Federated Learning**

Training data: (x1,y1), (x2,y2), (x3,y3), (x4,y4)

$$\sum_{i=1}^4 ||y_i - F(x_i)||^2$$

$$\nabla w = \frac{\nabla w_1 + \nabla w_2 + \nabla w_3 + \nabla w_4}{4}$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$||\mathbf{y}_1 - \mathbf{x}_1||^2 ||\mathbf{y}_2 - \mathbf{x}_2||^2 ||\mathbf{y}_3 - \mathbf{x}_3||^2 ||\mathbf{y}_4 - \mathbf{x}_4||^2$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$||\mathbf{y}_1 - \mathbf{x}_1||^2 ||\mathbf{y}_2 - \mathbf{x}_2||^2 ||\mathbf{y}_3 - \mathbf{x}_3||^2 ||\mathbf{y}_4 - \mathbf{x}_4||^2$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$||\mathbf{y}_1 - \mathbf{x}_1||^2 ||\mathbf{y}_2 - \mathbf{x}_2||^2 ||\mathbf{y}_3 - \mathbf{x}_3||^2 ||\mathbf{y}_4 - \mathbf{x}_4||^2$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$||\mathbf{y}_1 - \mathbf{x}_1||^2 ||\mathbf{y}_2 - \mathbf{x}_2||^2 ||\mathbf{y}_3 - \mathbf{x}_3||^2 ||\mathbf{y}_4 - \mathbf{x}_4||^2$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_2 \nabla w_4$$

$$\nabla w_2 \nabla w_3 \nabla w_4$$

$$\nabla w_3 \nabla w_4$$

$$\nabla w_1 \nabla w_4$$

$$\nabla w_2 \nabla w_4$$

$$\nabla w_1 \nabla w_4$$

$$\nabla w_2 \nabla w_4$$

$$\nabla w_3 \nabla w_4$$

$$\nabla w_4 \nabla w_4$$

$$\nabla w_1 \nabla w_4$$

$$\nabla w_2 \nabla w_4$$

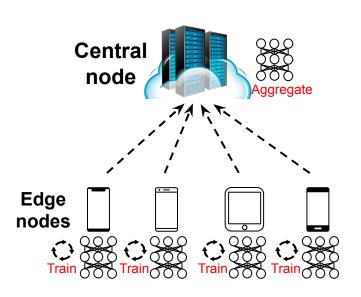
$$\nabla w_3 \nabla w_4$$

$$\nabla w_4 \nabla w_4$$

- Non-iid training data distribution
- Heterogeneity among the edge devices
- Communication error

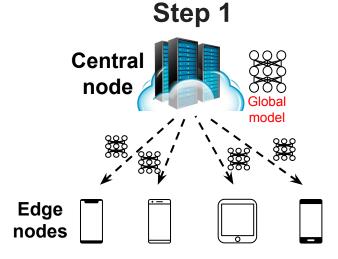


## **Federated Learning**



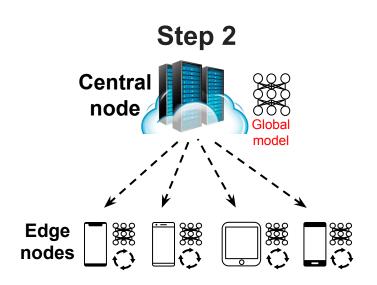
- Federated learning is a machine learning technique that allows the training of models across multiple decentralized nodes holding local data samples, without exchanging their data.
- This approach enhances privacy, user can train the powerful DNN model without sharing the dataset.





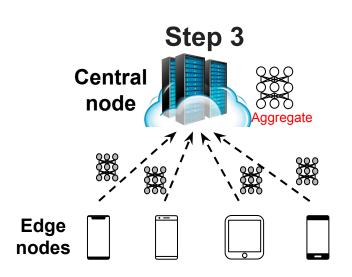
 A global model is initialized on the central node and sent to all participating nodes.

$$w_i = w_{global}$$
 For each i



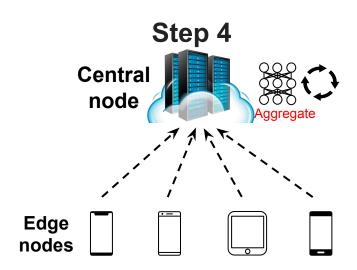
$$w_i' = \displaystyle \mathop{min}_{w_i} L(F(D_i), Y_i)$$

- Each node i trains the global model locally using its own data for a few epochs.
- The length of local training process may vary.



$$\Delta w_i = w - w_i$$

 Local updates are sent from each node to the central node.

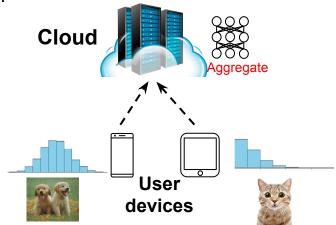


 The central node aggregates the local updates to update the global model.

$$w + rac{1}{N} \sum_i \Delta w_i$$

## Federated Learning Problems: Non-IID

- However, in FL, the data distributed across different devices or clients is not drawn from the same statistical distribution.
- Unlike the scenario distributed training, where the training data are randomly distributed.
   For FL, the data stored in each device is highly biased.
- This may lead to significant accuracy degradation for the global model.





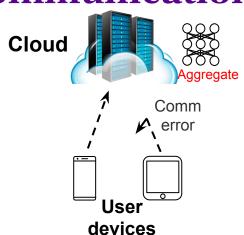
### Federated Learning Problems: Heterogeneity



- Different edge device may have different processing speed.
- This will cause the total latency of each training round bottlenecked by the straggler, leading to a slow convergence of the training process.



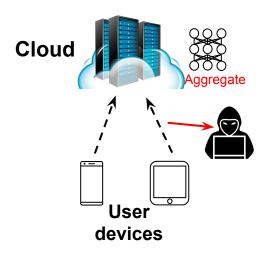
### Federated Learning Problems: Communication



- The communication between edge devices and central cloud may incur transmission loss or error.
- This will impact the training latency and accuracy.



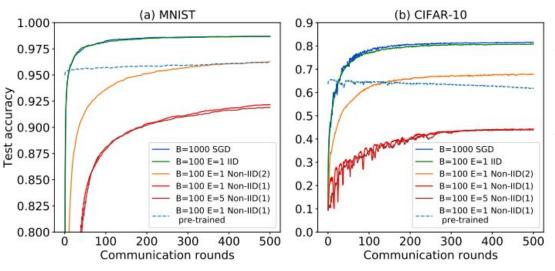
## **Federated Learning Problems: Privacy**



- The attacker can leverage the transmitted gradient to reconstruct the original input training data.
- This will lead to privacy leakage.



## Federated Learning with Non-iid Data

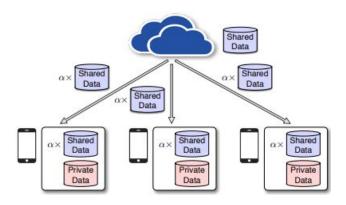


- The training sets are evenly partitioned into 10 clients.
- For IID setting, each client is randomly assigned a uniform distribution over 10 classes.
  - For non-IID setting, the data is sorted by class and divided to create two extreme cases: (a) 1-class non-IID, where each client receives data partition from only a single class, and (b) 2-class non-IID, where the sorted data is divided into 20 partitions and each client is randomly assigned 2 partitions from 2 classes.



## Federated Learning with Non-iid Data

- We propose a data-sharing strategy to improve FedAvg with non-IID data by creating a small subset of data which is globally shared between all the edge devices.
- Experiments show that test accuracy can be increased by ~30% on CIFAR-10 dataset with only 5% globally shared data.





#### **FedProx**

#### Algorithm 2 FedProx (Proposed Framework)

**Input:** 
$$K, T, \mu, \gamma, w^0, N, p_k, k = 1, \dots, N$$
 **for**  $t = 0, \dots, T - 1$  **do**

Server selects a subset  $S_t$  of K devices at random (each device k is chosen with probability  $p_k$ )

Server sends  $w^t$  to all chosen devices

Each chosen device  $k \in S_t$  finds a  $w_k^{t+1}$  which is a  $\gamma_k^t$ -inexact minimizer of:  $w_k^{t+1} \approx \arg\min_w h_k(w; w^t) = F_k(w) + \frac{\mu}{2} ||w - w^t||^2$ 

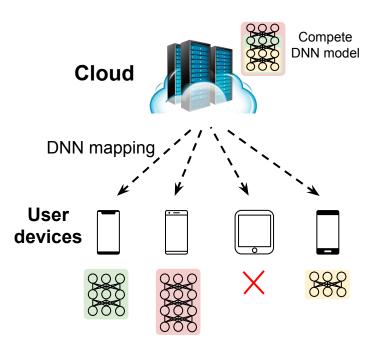
Each device  $k \in S_t$  sends  $w_k^{t+1}$  back to the server Server aggregates the w's as  $w^{t+1} = \frac{1}{K} \sum_{k \in S_t} w_k^{t+1}$ end for

$$\min_{w} h_k(w; \ w^t) = F_k(w) + \frac{\mu}{2} ||w - w^t||^2$$

- We add an extra term to minimize the l<sub>2</sub>
  distance between the initial weight w<sub>t</sub> and
  the learned weight w.
- This loss ensures that the learnt w is not too different from the original w.



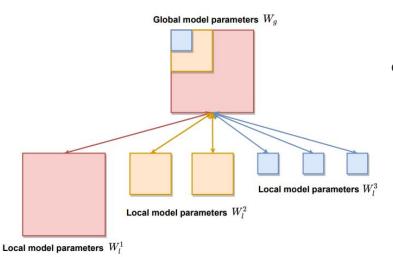
### Federated Learning Problems: Heterogeneity



- End devices will have heterogeneous system configuration.
- HeteroFL partitions and assigns the DNN based on the processing power of each device.
- Each device only train a subset of the DNN model.



#### HeteroFL



 Each edge device will be assigned with part of the neural network to perform local training based on its computational complexity.



### **Federated Learning Problems:**

**Communication** 

$$e(\mathbf{u}, \bar{\mathbf{u}}) = \frac{1}{N} \sum_{j=1}^{N} I(\operatorname{sgn}(u_j) = \operatorname{sgn}(\bar{u}_j))$$

- uj denotes the sign of the model weight after local updates.
- Our solution dynamically identifies relevant local updates and excludes those irrelevant from being.
- Only the local device with high relevance will transmit their weight to the central server.

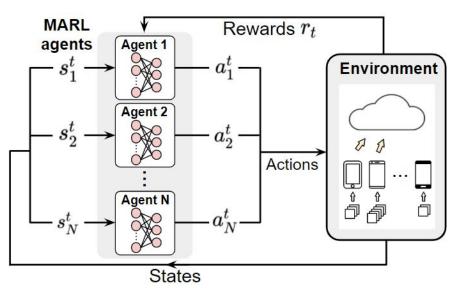
#### **FedMARL**

Final model Accuray Total Training Latency Total Bandwidth 
$$\max_A E\left[w_1 \overline{Acc(T)} - w_2 \sum_{t \in T} H_t - w_3 \sum_{t \in T} B_t\right]$$
 
$$A = \begin{bmatrix} a_n^t \end{bmatrix} \text{ Client Selection}$$

- Our objective is to maximize the accuracy of the global model while minimizing the total processing latency and communication cost.
- w1,w2,w3 are the importance of the objectives controlled by the FL application designers.
- The FL optimization problem is difficult to solve directly. We instead model the problem as a MARL problem.



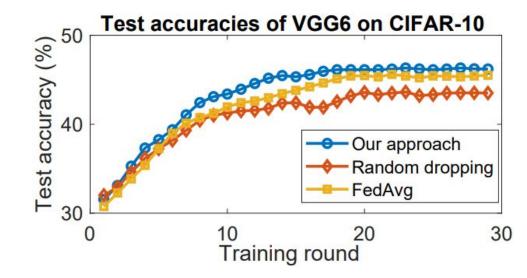
#### **FedMARL**



• In FedMarl, each client device n relies on an MARL agent at the central server to make its participation decision. Each MARL agent contains a simple two-layer Multi-layer perceptron (MLP) that is cheap to implement.



#### **FedMARL**



- Every random dropping is better than FedAvg.
- FedMarl is much better than random dropping and FedAvg.

