NYU

Lecture 09:
Distributed Machine Learning for
Training and Inference

Some Notes

e Project proposals have been graded, and feedback has been

posted.

e Lab 2 grades will be released this weekend.

e Lab 3is due in two weeks.

e \We'll also hold a round of project meetings to check on each
team’s progress.

e Change on Course Schedule

NYU SAI LAB

Recap

e Efficient training of DNNs
o Efficient computing
o Efficient storage

e Parameter efficient finetuning
e Speculative Decoding

NYU SAI LAB

Topics

Speculative Decoding (Continue)
Distributed DNN Training
Distributed DNN Inference
Federated Learning

NYU SAI LAB

Speculative Decoding

1] 2] 4]
1 T 2
? t t
[Large H Large } [Sma..}[Sma..]... [Smau}
LLM LLM LLM LLM || LLM LLM
| | [[[
o) of1] Nz o] [Jize
Accurate but slow Fast but inaccurate
Ttot = NTp,1 Ttot = NTp,2

e Speculative decoding enables lossless token generation with low latency.

U ‘8 I L B Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
N Y A A International Conference on Machine Learning. PMLR, 2023.

Speculative Decoding

NYU SAI LAB

Correct| Draft
A 1 LM

{DraftJ[Draft],.. |:> gn ,/,,,:> Draft | ...
LM LM

LM LM

| | Target
o PN PRRR [_JLM JEEA
N Tp,2 Tval

Ttot = NTp,2+ Tval < NTp,1

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

Speculative Decoding

Draft I
) 1 LM

Draft || Draft |,,, | Draft TEEE /v x Draft | ...
e @"“]' S

i I I Target

o Pl o3 LM ol

e |[f the token is incorrect, the target model provides the correct token to the draft model to help it

generate subsequent tokens more accurately.
e If the amount of tokens that pass the verification is too low, then it is possible that speculative
decoding is slower than autoregressive baseline.

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."

NYU SAI LAB International Conference on Machine Learning. PMLR, 2023.

LLM Decoding

well good
A A
well (Linelar & | ood (Linelar &]
doing (I ollgie}] | | | |
am ||| Softmax am ||| Softmax
! A ! A
Decoder Decoder
(* N (*
KV cache Decoder KV cache Decoder
a * N\ a * 3
Embedding Embedding
. T J . T J
“How are you | am doing” “How are you | am doing”

e We can simply select the token with the highest score. But better results are achieved if

the model considers other words as well. So a better strategy is to sample a word from
NYU SAI LAB the entire list using the score as the probability of selecting that word.

Speculative Decoding

e To increase the diversity of the LLM output, a better strategy is to
sample a word from the entire list using the score as the probability of
selecting that word.

e Let p(x), q(x) denote the probability density function specified by the
target and draft LLM

e To sample x ~ p(x), we instead sample x ~ q(x), keeping it if q(x) < p(x),
and in case q(x) > p(x) we reject the sample with probability 1- p(x)/q(x)
and sample x again from an adjusted distribution p’(x) = norm(max(0,
p(x) — q(x))) instead.

NYU ‘SAI LAB Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

Algorithm 1 SpeculativeDecodingStep

° ° Inputs: M,, M,, prefix.
Speculatlve De(:()dlng > Sample v guesses z; - from M, autoregressively.
fori=1to~ydo
gi(z) + My(prefix + [z1,...,Zi-1])
z; ~ gi(z)
end for
> Run M, in parallel.
e Speculative decoding does not save computation, P, e Py {m] &

_ , M, (prefiz),. .., My(prefiz + [z1,...,2,])
but greatly reduce the memory traffic by reducmg > Determine the number of accepted guesses n.

the number of memory reads, further reducing the . ~U(0,1),...,7, ~U(0,1)

overall latency. nemin({i—1]1<i <y,m > 2830 {y})

> Adjust the distribution from M, if needed.
P'(2) < pnta(z)
if n < -y then

P'(z) < norm(maz(0, pni1(x) — gn+1(2)))

end if

> Return one token from M,,, and n tokens from M.
t ~p'(x)

return prefiz + [z1,...,ZTn,t]

NYU SAI LAB o

Specinfer

Wy _n

Mq

“New York
University”

NYU SAI LAB

“private” or
“q" “prestigious”
Mq LN) Mq
I I
“New York “New York University
University is” isa”

“New York University is a
private research university”
or

“New York University is a
prestigious research university”

Miao, Xupeng, et al. "Specinfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative

Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).

Parallel Speculative Decoding

e PEARL is a parallel inference framework based on speculative decoding which utilizes pre-verify

i i
Model !)

Pre-Verify:

Post-Verify:

Parallel Speculative Decoding With Adaptive Draft Length

' i
DR EBER DR EEE

@00 688

Post-Verify: X

@0@ 5 .O

;\lu\na

and post-verify to achieve adaptive draft length.
e The draft model continues to decode during the verification stage.

e [f the verification fails, the windows size will become 1 in the next cycle.

NYU SAI LAB

Liu, Tianyu, Yun Li, Qitan Ly, Kai Liu, Jianchen Zhu, and Winston Hu. "Parallel speculative decoding with adaptive draft

length." arXiv preprint arXiv:2408.11850 (2024).

=12t

12

e %160 N\ §
Original Model 7 £ Top-k Predictions Key
LM Head > It, 1, As ® m® O @ @
F— () v . :
Losbiten | | o || v Adding extra decoding
— o vedusaead 1 of oo | " v heads to predict multiple
Layers Medusa Head 2 [=—>| difficult is, '] 7 7 Subsequent tokens in
Embedding ki } ‘[potidneutls]) V. parallel.
\ C“;) ; y . 4 & ” v
> Input "~ Candidates / Single step prediction ‘ —O | v v
e | | anage o | eamew TreeMesk @] |v v
Itis'not X ...
NYU SAI LAB Cai, Tianle, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. "Medusa: Simple lim 13

inference acceleration framework with multiple decoding heads." arXiv preprint arXiv:2401.10774 (2024).

Topics

Speculative Decoding (Continue)
Distributed DNN Training
Distributed DNN Inference
Federated Learning

NYU SAI LAB

Forward Pass for Linear Layer

Cin Cout Cout Cout
Cout Loss
function
Bl X |xCnl W =Bl Y Bl Y |——| VY
Layer 1 Layer L
B: batch size Cin: input channels Cout: output channels
X: input maps W: weight filters Y: output maps

e The fully-connected layer during the forward propagation can be converted into
matrix multiplications.

NYU SAI LAB .

Backward Pass for Linear Layer

Weight Gradient Computation Data Gradient Computation
Cout Cout Cin
B Cout Cin
Cin- X B|VY [= Cn vW BIVY X Cou| WT |= B
X: input maps W: weight filters Y: output maps

VX: input gradient ~ VW: weight gradient VY. output gradient

e DNN backward propagation involves two matrix multiplications

NYU SAI LAB

16

Backward Pass for Linear Layer

Data Gradient Computations

NYU SAI LAB

Cout
vY dRelLU/dx
X: input maps

VX: input gradient

vY

Weight Gradient Updates

Cin

W: weight filters

VW: weight gradient

Cout

W

-nx

VW

W!

Y: output maps

VY: output gradient

DNN backward propagation involves two matrix multiplications

17

Two Types of Parallelism

e
’ :

1

64

Loss Loss) . o
! : ! '¥| o Data is partitioned

and allocated equally
among the GPUs.

Forward pass
ssed piemyoeg
Forward pass
ssed piemyoeg

I—
o

Each GPU will
process
independently.

Forward pass
ssed piemyoeg

1

256 |

1

64

()]
g

Loss Loss
A : A :

Forward pass
ssed piemyoeg
Forward pass
ssed piemyoeg

=

()]
g

NYU SAI LAB o

Distributed DNN Training: Data Parallelism

e To train DNN in a distributed fashion, we need to batchify the training datasets.
e Assume a batch size of b€B, x denotes a batch of training dataset.
® |etn represent the learning rate. wt represents the weight at t.
e \We assume that the data will be distributed in an independent and identically distributed
(IID) fashion.
L(w) X E [(a Wiy = Wy — 17— Z Vi(x,wy)
I reX CIJEB
Loss function Weight update

NYU SAI LAB .

Parameter Server

e A parameter server is a distributed system used to manage and synchronize the
parameters (weights) of a machine learning model during training, especially in
large-scale and distributed training scenarios.

Step 1 Step 2
asEn asEn - asEn annmn -
HEnHREHEAE L | Eferu)i | | fapu E}W‘)
- asEn - - asEn - Welght - asEn - - anmn - elght
L J \ y, update L J U update
64 64 64 64
HENHEHEDE (;\ HENHIHEE ﬁ:‘
" TIT] " " TIT] " Weight - TTT] - - [TTT] - Weight
h 64 o 64 g update ~ 64 o 64 update

A total batch size of 256

Li, Mu, et al. "Scaling distributed machine learning with the parameter server." 11th USENIX Symposium on

NYU SAI LAB operating systems design and implementation (OSDI 14). 2014.

20

Parameter Server

e Total amount of communication: 2(N-1)G.

-~
t)
Aggregate

(S

__Step3
e [

IILI) N asmn)
§ GPU E g GPU E

J

J

Step 4
£ [apu)i+—>t £[apu)Z
anEn N anan
ll‘l) asmn
§ GPU E g GPU E

e N is the number of nodes, G is the size of the weight gradient.

e If a worker node fails, other nodes can continue training without significant disruption. But PS
scheme is not scalable, the central node can not handle all the servers, as the number of

nodes increases.

NYU SAI LAB

21

Parameter Server

GPU GPU GPU GPU GPU GPU GPU GPU GP!

e To improve performance, we can deploy multiple parameter servers as backup nodes
e However, this approach introduces additional computation and communication
overhead.

NYU SAI LAB

All Reduce

e All-reduce is a communication operation widely used in distributed deep neural
network (DNN) training to synchronize and aggregate data across multiple
computing nodes or devices.

e Detailed training steps:

o Forward Pass: Each node (e.g., GPU) computes the forward pass of the neural network
independently using its local mini-batch of data.

o Backward Pass: Each node computes the gradients of the loss with respect to the model
parameters.

o All-Reduce Step: The gradients from all nodes are summed together using the all-reduce
operation. This summed gradient is then broadcast to all nodes.

o Parameter Update: Each node updates its local copy of the model parameters using the
aggregated gradients.

NYU SAI LAB .

Ring All-Reduce

Layer 4 I' I """"" I e Assume a neural network with four layers.
i::::::::::__:_ I N e Each node has been assigned with an
Layer 3 I , equivalent amount of training dataset.
II\:::-::::::::: :.':::::::.::::::::::::‘\II o A” the nOdeS have flnlShed tralnlng USIﬂg
Layer 2 I:I | their own local training dataset.
Layer 1 I:I I I I
Node 1 Node 2 Node 3 Node 4

NYU SAI LAB

Ring All-Reduce

)

1|
Il
4 0 -

Node 1 Node 2 Node 3 Node 4

NYU SAI LAB

Nodes are arranged in a ring topology, and each
node passes a portion of its data to its neighbor
in a circular fashion. This continues until all
nodes have the complete reduced data.

Each node has identical amounts of workload.

25

Ring All-Reduce

ant /N1 N (IR W | !
H< il 0|l a1 1 |
|

| 0 |0 I —li0 00 (O
— I 11 11

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

NYU SAI LAB

Ring All-Reduce

il 0 | 000 N
II:“:I Il : III:“:I o :)-E:seer_]d of share-reduce
J 0

| 00 (oog | o0

Node 1 Node 2 Node 3 Node 4

NYU SAI LAB

Ring All-Reduce

|l
i

il
|

Node 1 Node 2 Node 3 Node 4

D S

NYU SAI LAB

I
0

-

Il
I

I

i
]
Il

Il
Il

UL
Il

I

I
Il

AN
Ll
Il
I

D S

I

Qi
Hiil
Il

Node 1 Node 2 Node 3 Node 4

Ring All-Reduce

U0
0

Node 1 Node 2 Node 3 Node 4

I

I
[
0
[l

AN
N
0L
I

NYU SAI LAB

-

|
Il
Il
Il

I
Il
I

I

e Total amount of communica
e N isthe number of nodes, G is the size

atio

(I
JUUE
1
I

I
[
000
[l

n: 2(N-1)G.
of the weight gradient.

Node 1 Node 2

AN
I
LK
JIC

Node 3

Model Parallelism: PipeDream

—a— AlexNet

x O
(=R)

60
40

Comm. overhead

(% of total time)

%)
=4
\

12 4 8 16 32
Number of GPUs

(a) Instances with 8 1080Tis (private cluster).

—&— VGG-16

—l— ResNet-50 —¥— GNMT-8 —&— GNMT-16
g 100 — g o 100
;g’g 80 i;; 80
23S 60 —a ZE 6
8 22
g 40 22 40
ES 20 ES 20
o< o : ; . ; o 0 - : ; :
12 4 8 16 32 12 4 8 16 32

Number of GPUs

(b) Instances with 4 V100s (Azure).

Number of GPUs

(c) Instances with 8 V100s and NVLink (EC2).

e The communication overhead for many of these models is high despite using multi-GPU servers.
e Applications distributed across multi-GPU servers are bottlenecked by slower inter-server links, as
evidenced by communication overheads spiking and then plateauing when training scales out to multiple

servers.

NYU SAI LAB

ACM symposium on operating systems principles. 2019.

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th

30

Communication Reduction for Distributed Training

L1 1] (111} EEEN
g N i e AN

SINTSTNIZT

More Training Nodes Deep Gradient Compression

: ' ‘ [I |
Time: computation ' computation ' '
! communication : communication !

e \We reduce the communication bandwidth by sending only the important gradients
(magnitude > thres).

e The accumulated weight gradient of each layer is transmitted only when its value is larger
than a threshold.

NYU SAI LAB Lin, Yujun, et al. "Deep gradient compression: Reducing the communication bandwidth for distributed training." arXiv

preprint arXiv:1712.01887 (2017).

Communication Reduction for Distributed Training

Algorithm 1 Gradient Sparsification on node k

Input: dataset x
Input: minibatch size b per node

e The gradient is collected locally, only Inpue: the naiber of fades /Y

Input: optimization function SGD

gradient with high magnitude are sent ~ tmput: init parameters w = fw[0],wll], - w{M]}
3 —

to the central server for model 2: fort=0,1,--- do
. 3: Gic T Gf_l
updating. 4 fori=1,--- bdo
: : HF o) Sample data x from x
e Run-length encoding is utilized to ; dCfv‘i“eGHz—&—be(m;wt)
1 5 ena ior
compress the sparse gradient. N .. T
9: Select threshold: thr < s% of |G} [j]]
10: Mask < |G¢lj]| > thr
Ti; Gilj] « Gilj] © Mask
12: GE[j] + G¥lj] © ~Mask
13: end for

14: All-reduce G¥ : G + Zszl encode(éf)

NYU SAI LAB [S N

Two Types of Parallelism

Loss
2
®
Q-
T
mLoss @ g
@ | P Q o
| 2 L |
T ! !
: 1 |
S | B 256
[I][I] ol 7 4 Loss
256 3

NYU SAI LAB

[

256

.

Forward pass
|
_

e

ssed piemyoeg

ssed piemyoeg

[

256

[

256

Loss
n :
0 :
® :
Q. ;
=3 |
! :
Sl
O 3
w H

Loss
n :
0 :
@® '
Q. ;
T s
@ |
s i
[0 i
u i

ssed piemyoeg

ssed piemyoeg

J

J

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural

information processing systems 32 (2019).

Data is partitioned
and allocated equally
among the GPUs.

Each GPU will

process
independently.

33

Loss

Distributed DNN Training: Model Parallelism

01 Loss e 01 Loss e e The peak memory also becomes smaller by N
g 2 g 2 times, where N is the number of devices.
T 5 T 5
g s S8 I
3 3 3 3
L i h L i d —@
(] (] i

256 256

Loss Loss

——————

Forward pass
ssed piemyoeg

I:[l[[l I:[l[[l e The peak memory usage can be further reduced by

256 256 buffering only the inputs of each layer block and
recomputing the intermediate results when needed.

Forward pass
ssed piemyoeg

34

N U 8 I L B Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
Y A A information processing systems 32 (2019).

Underutilization During Training

Vs

g
g
2
[
256
g
g
&
[
256

ﬂ
L]
ssed piemyoeg

e

Loss Loss

——————

.

ssed piemyoeg

]

ssed premoeg

H
=

Forward pass

256

Loss

Forward pass

e

v
>

ssed piemyoeg

J

J

NYU SAI LAB

R | B
= B

E | B,
B | Time | B,

Update

Update

Update

GPU resources are often underutilized during
training, primarily due to the overhead and
inefficiencies introduced by model parallelism in
the DNN training process.

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural

information processing systems 32 (2019).

Update

35

Distributed DNN Training:

Device 3

Device 2

Device 1

Device 0

Loss

L e
F3 B3

t ¥
F. B.
t i
F B,
T i

\/'

Gradients
(a)

NYU SAI LAB

R |

Model Parallelism

F. B. Update
F. B. Update
F. B. Update
Time o[
(b)
|Foo| Fas | Foa | Foo| Bus | Bz | Bos | Bao Update
Fzo | F2 | Faz | Fas Bz | Bzz | Bar | Bro Update
; Fis|Fiz| Fia| | Bis | Biz | Bur | Buo e |
| Bubble Bos | Boz | Bor | Boo | Update
()

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

The naive model parallelism
strategy leads to severe
under-utilization due to the
sequential dependency of the
network.

GPipe first divides every
mini-batch of size N into M
equal micro-batches, enabling
different accelerators to work
on different micro-batches
simultaneously.

36

Evaluation Results

TPU AmoebaNet Transformer
K = 2 4 8 2 4 8
M=1 1 1.13 1.38 1 1.07 1.3
M=a4 1487 1726 L2 17 3.2 48
M=32 121 184 348 138 34 6.3

e Gpipe achieves different levels of acceleration under different
number of devices and number of microbatches.

NYU SAI LAB

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

37

Model Parallelism: PipeDream

B AR ARAAN (NAAR) Ay \\\ -\\\ % wnn 5 Q N & Worker 1 Worker 2 Worker3 Worker 4
e N \
Worker 2 N { (o
Worker 3 < > :
Worker 4 < >)
W
- N >
npu qd
st:ge \./ Output stage

Y it S e

e [t will be beneficial to pipeline-parallel
assignment and achieve temporal overlap of

computation and activation / gradient i |
. . | 535 Forward Work Backward Work |
commun ICatI on. E I Background Communication i

(Activations & Gradients)

U 8 I L B Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
N Y A A ACM symposium on operating systems principles. 2019.

Model Parallelism: PipeDream

All inputs use weights from last flush Tﬁ';':::::::‘s: Worker 1| EEPEERY §
Worker 1 A NN DA 1l1l2]2 3T|T A s Worker 2 \\ 112 I3 4
Worker 2 AN . \ \ 111122133424 Worker 3 \\1 234
Worker 3 R\ 4 N ‘11223344\ N Workerd
st [l e :\ \ \ Startu'p State Steady' State
A . Time E

I Forward Pass [| Backward Pass SN Idle B Forward Pass [] Backward Pass T Idle

e In this paper, we propose PipeDream, a system that uses Pipeline to enable faster DNN training by
combining intra-batch parallelism with inter-batch parallelization.

U 8 I L B Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th 20
N Y A A ACM symposium on operating systems principles. 2019.

Model Parallelism: PipeDream

Computational

Input DNN - graph with profile

Activation sizes

e PipeDream’s automated mechanism to

- Parameter sizes T .
YY Compute times partition DNN layers into stages.
X
e l e PipeDream first profiles the input DNN, to
ryYYY) et estimates for each layer’s compute
St i _ Optimizer time and output size.
age
2 H Pipeline-parallel t
00000 execution e Using these estimates, PipeDream’s
m;??;’ = . optimizer partitions layers across available
=55 Constraints machines, which is then executed by
(e.g., device memory capacity, hardware . , .
Stage 4 i topology including number of workers and PlpeDream S runtime.
interconnect bandwidths)

U 8 I L B Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
N Y A A ACM symposium on operating systems principles. 2019.

Model Parallelism: PipeDream

Task Model Dataset Accuracy # Servers X # GPUs PipeDream Speedup over DP
Threshold per server (Cluster) Config

Epoch time TTA

4x4 (A) 15-1 5.28X 5.28X

VGG-16 [48] ImageNet [44] 68% top-1 2x8 (B) 15-1 2.08% 2.46X

I ResNet-50 [26] ImageNet [44] 75.9% top-1 . 16 e Ix

mage esNe mageNe .9% top 2x8 (B) i€ i5 i
Classification @

: 4x4 (A 15-1 4.92X N/A

AlexNet [37] Synthetic Data N/A 2x8 (B) Tl 2.08x N/A

1x4 (A) Straight 1.46X 2.2X

GNMT-16 [55] WMT16 EN-De 21.8 BLEU 4x4 (A) Straight 2.34x 2.92x

Translation 2x8 (B) Straight 3.14x 3.14X

1x4 (A) Straight 15X 1:5%

GNMT-8 [55] WMT16 EN-De 21.8 BLEU 3x4 (A) Straight 2.95x 2.95%

2x8 (B) 16 1X 1X

Language Model AWD LM [40] Penn Treebank [41] 98 perplexity 1x4 (A) Straight 4.25x 4.25X%

Video Captioning S2VT [54] MSVD [11] 0.294 METEOR 4x1 (C) 2-1-1 3.01x 3.01x

U 8 I L B Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
N Y A A ACM symposium on operating systems principles. 2019.

Model Parallelism: PipeDream

Top-1 Accuracy (%)

Top-1 Accuracy (%)

100

wn
(=]

NYU SAI LAB

—— DP

e=t== PipecDream

(=)

0 20 40
Time (hours)

(a) Cluster-A.

100 —_=_Dp
e==== PipcDream
0 T T T T T
5 10 15 20

Time (hours)

(b) Cluster-B.

= PipeDream

BLEU Score
(3]
[a)

O T T T T
0 1 2 3 g
Epoch
(a) GNMT-16
< 100 = DP
1% = PipeDream
<
St
g 50
<
N
& 0 : : :
= 0 20 40 60
Epoch

(b) VGG-16

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th

ACM symposium on operating systems principles. 2019.

42

Accurate, Large Minibatch SGD: Training

ImageNet in 1 Hour

T
o

w
(6a]
T

w
o
T

N
(62
T

ImageNet top-1 validation error

N
o

| | |

64 128 256 512

1K 2k 4Kk
mini-batch size

8k

16k 32k 64k

For all minibatch sizes we set the learning
rate as a linear function of the minibatch
size and apply a simple warmup phase for
the first few epochs of training.

Using this simple approach, accuracy of our
models is invariant to minibatch

size (up to an 8k minibatch size).

This enables a linear reduction in training
time with 90% efficiency as we scale to
large minibatch sizes, allowing us to train
an accurate 8k minibatch ResNet-50 model
in 1 hour on 256 GPUs.

NYU SAI LAB Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017). 43

Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour

e Our goal is to use large minibatches in place of small minibatches while maintaining training
and generalization accuracy.
O CNNs typically use batch sizes ranging from 64 to 1K.

O BERT models employ 8K-32K global batches with the LAMB optimizer and layerwise adaptive
scaling.

O Large language models (LLMs) are trained in large-scale distributed settings with batch sizes of
8K-64K tokens per step.

1 1
® Lw)= % Z l(z,w) wip =wp— I]’—? Z Vi, wy)

lreX reB

NYU SAI LAB Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017). 44

Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour

e Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning
rate by k.

1 : 5
Wiy = W — I]—Z Z V[(_.l'. wt+j) Wt4+1 = Wt — I]E Z Z VI(I u't)

n 3
j<k z€B; j<k xzeB,;

e As the batch size increases, the number of iterations reduces, we need to increase the
learning rate. If Vi(w.w;) = Vi(x,wis;), then the two equations are equivalent.

NYU SAI LAB Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017). 45

Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour

e At the start of training, model parameters are usually randomly initialized and uncalibrated. A high
learning rate at this point can cause large, erratic gradient updates that push parameters into
unstable regions, leading to exploding losses or divergence.

e We start from a learning rate of n and increment it by a constant amount at each iteration such that
it reaches kn after 5 epochs. After the warm up, we go back to the original learning rate schedule.

NYU SAI LAB Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017). 46

Topics

Speculative Decoding (Continue)
Distributed DNN Training
Distributed DNN Inference
Federated Learning

NYU SAI LAB

BranchyNet

e Data samples are not equal in
their recognition difficulties.

e Forthe easy samples, they only
needs to be processed with a
few layers before generating the
correct results.

‘ n

CIFAR10-Easy CIFAR10-Hard

NYU SAI LAB

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from
deep neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.

48

BranchyNet

e During Inference, a confidence score is computed at each
exit point, if greater than a predefined threshold, then the
output is computed locally, leading to a faster inference.

e The confidence score is defined as: entropy(y) = Z Y. logy,,

ceC

Linear

Linear

——

Conv 3x3
L

Conv 3x3'

Conv 3x3

Conv 5x5 ‘

Conv 5x5

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep

NYU SAI LAB neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016. 49

BranchyNet

e o train the Branchy-style DNN, we can sum the cross-entropy loss at each local exit

points, and train them jointly.

Lbranchynet

U 8 I L B Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep
NY A A neural networks." 2016 23rd international conference on pattern recognition (ICPR). |IEEE, 2016.

an yexnn y 9)

Loss

wil WwWe

Layer 4

Ii

Layer 3

W3 |

Layer 2

W4

Layer 1

50

Distributed Deep Neural Networks over the
Cloud, the Edge and End Devices

N A I T I

[(TTTrrrrrTrrrrTrTd

e We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies,

_:')CIoud Exit (b) :_ﬂCIoud Exit (c) = Cloud Exit

== ocal Exit == ocal Exit

N\
e
Device

(a) Cloud-based DDN

(b) DDNN over cloud and device
(c) DDNN over cloud and geographically
distributed devices

I I A e
T
T TrrrrrTri

[N

=\

[
1

Device

consisting of the cloud, the edge (fog) and end devices.

NYU SAI LAB

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017.
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH
Computer Architecture News 45.1 (2017): 615-629.

51

DDNN

[cloud
[___l Local

™ "'End Device

ConvP

ConvP

Cloud
Aggregator

mx)<T

Cloud Exit

FC

FC

uy

ConvP

FC
Ifl__%
| conve || conve

FC
:

ConvP]
T

Local Exit

Each edge device is implemented
with a local DNN for local inference.

The results from each local DNN is
first aggregated locally.

If the local exit is not confident, the
activation output after the last
convolutional layer from each end
device is sent to the cloud aggregator
for further processing.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017. 52
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH

Computer Architecture News 45.1 (2017): 615-629.

ADCNN

Processing time for VGG16

400

300

200

100

Processing latency (ms)

1 2 83 4 5 6 7 8 9 10 11 12 13 14
Layer index

e Earlier layers take much longer to process than the later layers.

NYU SAI LAB

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

53

ADCNN

Device 1

Device 2

Convolution

ifmaps Filter 1 ofmaps e In channelwise partition, each node
. needs to exchange their partially

accumulated output feature maps to
produce final output feature maps,
which leads to a significant

- communication overhead.
Filter K
N
R J M
U
Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network 54

edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

ifmaps ofmaps
ADCNN Poreer] veon |]
H/2 H/2
W/2 W/2) . . .
_ . . e The input will partitioned in
Device B [% Weight [% spatial dimension and
H/2 H/2 distribute over multiple
W/2 W/2 devices.
Device C .~ ,
Weight _
H/2 H/2 _ _ .
W/2 W/2 e The weight will duplicate and
. . . save on each device.
Device D - , :
Q Weight _ Q
H/2 H/2
W/2 W/2
Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network 55

NYU SAI LAB

edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

' 0.2 \'\
1 A : = . . : N B
ifmap data halo . 0.6]~--
A | B A lll B “ |o.4lo3fo.0 ¥
B :
C | D Cf{ll D F e — \
: ool
C D
Data halo transmission among tiles
(a) (b) (c)

e In spatial partition, each tile needs to transmit their data halo in order to compute the correct result.

NYU SAI LAB

\\ j \
A LA L] BE--P2| B Al B9 B
. 0.6|«-- 0.6| ! . 0.0| !
¢ Jo.4o.3lo. i i [o.0fo.0jo.0| !
AR ! U '
'.: I I) :k\
% oS
C D C D
Normal Spatial Partition Fully Decomposable Spatial Partition
(FDSP)

e The cross-tile information transfer can be eliminated by padding the edge pixels with zeros.

NYU SAI LAB

57

ADCNN
Step 1

Progressive
Retraining

3 W

Original CNN model Output CNN model

NYU SAI LAB

mput A
Ak Vi
‘22.’
U \ *
Tt 4
N

Step 2

Edge device cluster

7 Conv I
node
‘_ i a

Central
] <[node
onv //4 %
node |-

---»Dog

D Y

58

Evaluation Results

e We implement ADCNN system with nine
identical Raspberry Pi devices which simulate
the edge devices. Among these nine devices,
eight are used as Conv nodes, and the rest
one is used as the Central node.

e Baselines:

o Single device scheme
o Remote cloud scheme

e ADCNN decreases the average processing

latency by 6.68x and 4.42x, respectively.

NYU SAI LAB

7000

6000

m
[$)]
o
o
o

N
o
o
o

Processing latency (
N w
o (=)
o (=)
() o

FCN

YOLO

[Single device scheme
[Remote cloud scheme |
[_JADCNN

VGG16

ResNet34 CharCNN

59

MoDNN

NYU SAI LAB

Node 0

Node 2

Output Neurons

1
1
1
1
1
1
1
ﬁ

Node 0

Node 3

suoinaN nduj

(a) Neurons in 2D-grids of 4 nodes. (b) BODP for 4 worker nodes.

Mao, Jiachen, et al. "Modnn: Local distributed mobile computing system for deep neural network." Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017.

60

Distributed Inference for Transformer

Input dimension: L®E
Partitioning across dimension L requires all-reduce operation for
QK™ computation.

e Partitioning across dimension E (headwise partition) is better:

o Q, K,V tensors are broken into multiple components along the
embedding dimension.
m (B,LLE) % (EXE) > (BXLXE)
m (BLE)— (B,M,L, EM) - (B,M,L,D), where
D=E/M
o All the following operations can be performed independently
over each head M.
m QKT—(B,M,L%D) % (B,M,D%XL) > (B, M, L%L)
m Softmax(QKT) — (B, M, L%L)
m Softmax(QKT) 8 V — (B, M, L%L) % (B, M, L®%D) —
(B, M, L%D) —» (BRLXE)

NYU SAI LAB

linear

Q K \

(o] (o) (]

T T

[Normalization]

61

Topics

Speculative Decoding (Continue)
Distributed DNN Training
Distributed DNN Inference
Federated Learning

NYU SAI LAB

62

Federated Learning

 Training data: (x1,y1), (x2,y2), (x3,y3), (x4,y4) Z ly; — F(z:)||?
Vwy + Vwy + Vws + Vwy
Vw = 3
/’/ N e Non-iid training data distribution
/ Vuwy Vg Vw4\ e Heterogeneity among the edge
Iyrxft el Iyl e devices

Communication error

Cad Cad
L))
Traln Tra|n Train Train

(x1,y1) (Xx2,y2) (x3,y3) (x4,y4)

NYU SAI LAB -

Federated Learning

e Federated learning is a machine learning technique

Central that allows the training of models across multiple

node decentralized nodes holding local data samples,
fagregate without exchanging their data
RAANR o |
/ N
,’/ K \\\ \\ e This approach enhances privacy, user can train the
g / \ RN powerful DNN model without sharing the dataset.
el [[
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial

NYU SAI LAB intelligence and statistics. PMLR, 2017.

64

e Aglobal model is initialized on the central node and sent
to all participating nodes .

W; = Wgylobal Foreach i

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

65

FedAvg

Step

w, = minL(F(D;),Y;)

Central % w;
node
Global
R \ S model
RN e Each node i trains the global model locally
R RN using its own data for a few epochs.

¥ 4
Edge ™38 & Q%@é o -
nodes O ' O ot S The length of local training process may vary.

NYU ‘SAI LAB McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 66

intelligence and statistics. PMLR, 2017.

Central Aw; = w — w;
node
/;V AN e Local updates are sent from each node to the central
AR node.
4 / \ ~
R g B

NYU 8 I L B McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
A A intelligence and statistics. PMLR, 2017.

67

e The central node aggregates the local updates

node to update the global model.

w—i—%z’i:Awi

NYU 8 I L B McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
A A intelligence and statistics. PMLR, 2017.

68

Federated Learning Problems: Non-IID

e However, in FL, the data distributed across different devices or clients is not drawn from
the same statistical distribution.

e Unlike the scenario distributed training, where the training data are randomly distributed.
For FL, the data stored in each device is highly biased.

e This may lead to significant accuracy degradation
for the global model.

Al E
o User
2 devices

NYU SAl LAB e B,

Federated Learning Problems: Heterogeneity

e Different edge device may have different
processing speed.

e This will cause the total latency of each training
round bottlenecked by the straggler, leading to a
slow convergence of the training process.

User
devices

NYU SAI LAB o

Federated Learning Problems:

Communication

N

User
devices

NYU SAI LAB

The communication between edge devices and
central cloud may incur transmission loss or error.
This will impact the training latency and accuracy.

4l

Federated Learning Problems: Privacy

NYU SAI LAB

User
devices

The attacker can leverage the transmitted gradient
to reconstruct the original input training data.
This will lead to privacy leakage.

72

Federated Learning with Non-iid Data

The training sets are evenly partitioned
into 10 clients.

%660 (a) MNIST B8 (b) CIFAR-10
0.975] 0.8 For IID setting, each client is randomly
0.050] f I 0.7 assigned a uniform distribution over 10
> 1
2 0.925 0.6 classes.
3 0.51
g 9390 4 Bk For non-IID setting, the data is sorted
7 B=1000 SGD # B=1000 SGD s
808751 | i 0.3 G by class and divided to create two
0.850] || B=100 E=1 Non-IID(2) B=100 E=1 Non-IID(2) extreme cases: (a) 1-class non-IID,
’ —— B=100 E=1 Non-IID(1) 0.2 —— B=100 E=1 Non-IID(1) . .
—— — B=100 E=5 Non-IID(1) — B=100 E=5 Non-IID(1) where each client receives data
' J e el | e] partition from only a single class, and
0.800 0.0
0 100 200 300 400 500 0 100 200 300 400 500 (b) 2-class non-IID, where the sorted
Communication rounds Communication rounds data is divided into 20 partitions and
each client is randomly assigned 2
partitions from 2 classes.
NYU SAI LAB Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018). 73

Federated Learning with Non-iid Data

e \We propose a data-sharing strategy to improve FedAvg with non-lID data by creating a small
subset of data which is globally shared between all the edge devices.

e Experiments show that test accuracy can be increased by ~30% on CIFAR-10 dataset with only
5% globally shared data.

NYU SAI LAB Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

74

FedProx

a t M t2
: min hg (w; w') = Fr(w) + =||lw — w*||
Algorithm 2 FedProx (Proposed Framework) w)
Imput: K, T, p, v, w?, N, pp, k=1,--- ,N
fort=0,---,T—1do

Server selects a subset S; of K devices at random (each

® \We add an extra term to minimize the |2

device k is chosen with probability py) distance between the initial weight wt and
Server sends w' to all chosen devices the learned weight w.

Each chosen device k € 5 finds a wi™ o This loss ensures that the learnt w is not
which is a < -inexact minimizer of: ?ﬁQ R too different from the original W

arg min,, hy(w; w') = Fi(w) + §ljlw —w
Each device k € S; sends wi" back to the server
Server aggregates the w’s as w'™' = £ >, o wi™

end for

NYU 8 AI L AB Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2 75

(2020): 429-450.

Federated Learning Problems: Heterogeneity

% oinmosl ® End devices will have heterogeneous
system configuration.
e HeteroFL partitions and assigns the
DNN based on the processing power

. i '\ ~ .
DNN mapping ,* ¢ '\ “~_ of each device.
’ VI \ AN e Each device only train a subset of the

DNN model.

v
y
User
devices D D

U Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
NY ‘SAI LAB heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020). 76

HeteroFL

Global model parameters W,

e Each edge device will be assigned with
part of the neural network to perform local
training based on its computational
complexity.

’ Local model parameters WIS

Local model parameters Wl2

Local model parameters VV,l

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for

NYU SAI LAB heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

77

Federated Learning Problems:

Communicatimll

e(u,) = § >;_; I(sgn(u;) = sgn(;))

e Uj denotes the sign of the model weight after local updates.
Our solution dynamically identifies relevant local updates and excludes
those irrelevant from being.

e Only the local device with high relevance will transmit their weight to the
central server.

NYU SAI LAB Luping, W.; Wei, W.; and Bo, L. 2019. Cmfl: Mitigating communication overhead for federated learning. In 2019 IEEE 39th 78

International Conference on Distributed Computing Systems (ICDCS), 954-964. IEEE.

FedMARL

Final model Total Training _
Accuray Latency Total Bandwidth
m/?XE [wlAcc(T) — Wo E Hi — ws E Bt}
teT teT
L T Client
A — [Cln] Selection

e Our objective is to maximize the accuracy of the global model while minimizing the total processing latency
and communication cost.

e w1,w2,w3 are the importance of the objectives controlled by the FL application designers.

e The FL optimization problem is difficult to solve directly. We instead model the problem as a MARL
problem.

U ‘8 I L Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in
NY A AB federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.

79

FedMARL

MARL \ Rewards 7'
agents Agent 1
— stl — % at1 — (" Environment)

e -
t

T f
. Sl Actions

a
Agent N
_35\/ > asv— 4 J P)
St;tes

e In FedMarl, each client device n relies on an MARL agent at the central server to make its
participation decision. Each MARL agent contains a simple two-layer Multi-layer perceptron (MLP)
that is cheap to implement.

NYU SAI LAB

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in

federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022. 8o

FedMARL

Test accuracy (%)
S (6))]
o o

w
o

Test accuraqies of VGG6 on CIFAR-10

.....

~—©— Our approach
—&— Random dropping
FedAvg
0 10 20 30

Training round

e Every random dropping is better than FedAvg.
e FedMarl is much better than random dropping and FedAvg.

NYU SAI LAB

81

