
Lecture 09:
Distributed Machine Learning for

Training and Inference

2

Some Notes
● Project proposals have been graded, and feedback has been

posted.
● Lab 2 grades will be released this weekend.
● Lab 3 is due in two weeks.
● We’ll also hold a round of project meetings to check on each

team’s progress.
● Change on Course Schedule

3

Recap
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Speculative Decoding

4

Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning

5

Speculative Decoding

…
0

1

1

2

0 1

4

0 32

Large
LLM

Large
LLM

Large
LLM

…
0

1

1

2

Small
LLM

Small
LLM

0 1

4

Small
LLM

0 32

Accurate but slow Fast but inaccurate
Ttot = NTp,1 Ttot = NTp,2

● Speculative decoding enables lossless token generation with low latency.

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

6

Speculative Decoding

…
0

1

1

2

Draft
LM

Draft
LM

0 1

4

Draft
LM

0 32

Draft
LM

Target
LM

✓✓✓✓✓

5

Draft
LM

10 32 4

…10 32 4

Correct

Ttot = NTp,2 + Tval < NTp,1

NTp,2 Tval

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

7

Speculative Decoding

● If the token is incorrect, the target model provides the correct token to the draft model to help it
generate subsequent tokens more accurately.

● If the amount of tokens that pass the verification is too low, then it is possible that speculative
decoding is slower than autoregressive baseline.

…
0

1

1

2

Draft
LM

Draft
LM

0 1

4

Draft
LM

0 32

✗

Draft
LM

Target
LM

✓✓

3

Draft
LM

10 2

…10 32 4 2

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

8

LLM Decoding

● We can simply select the token with the highest score. But better results are achieved if
the model considers other words as well. So a better strategy is to sample a word from
the entire list using the score as the probability of selecting that word.

Decoder

Decoder

Linear &
Softmax

Embedding

good

KV cache

I

“How are you I am doing”

am
doing
good

Decoder

Decoder

Linear &
Softmax

Embedding

well

KV cache

I

“How are you I am doing”

am
doing
well

9

Speculative Decoding

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

● To increase the diversity of the LLM output, a better strategy is to
sample a word from the entire list using the score as the probability of
selecting that word.

● Let p(x), q(x) denote the probability density function specified by the
target and draft LLM

● To sample x ∼ p(x), we instead sample x ∼ q(x), keeping it if q(x) ≤ p(x),
and in case q(x) > p(x) we reject the sample with probability 1− p(x)/q(x)
and sample x again from an adjusted distribution p’(x) = norm(max(0,
p(x) − q(x))) instead.

10

Speculative Decoding

● Speculative decoding does not save computation,
but greatly reduce the memory traffic by reducing
the number of memory reads, further reducing the
overall latency.

11

SpecInfer

Miao, Xupeng, et al. "SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative
Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).

Mq

“New York
University”

“is”

Mq

“New York
University is ”

“a”

“New York University is a
private research university”

… Mq

“private” or
“prestigious”

“New York University
is a”

Mp

✅

“New York University is a
prestigious research university”

or

12

Parallel Speculative Decoding

Liu, Tianyu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. "Parallel speculative decoding with adaptive draft
length." arXiv preprint arXiv:2408.11850 (2024).

● PEARL is a parallel inference framework based on speculative decoding which utilizes pre-verify
and post-verify to achieve adaptive draft length.

● The draft model continues to decode during the verification stage.
● If the verification fails, the windows size will become 1 in the next cycle.

13

Medusa

Cai, Tianle, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. "Medusa: Simple llm
inference acceleration framework with multiple decoding heads." arXiv preprint arXiv:2401.10774 (2024).

● Adding extra decoding
heads to predict multiple
subsequent tokens in
parallel.

14

Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning

15

Forward Pass for Linear Layer

● The fully-connected layer during the forward propagation can be converted into
matrix multiplications.

X Y=W

X: input maps W: weight filters Y: output maps

B

Cin

Cin

Cout

B

Cout

B: batch size Cin: input channels Cout: output channels

YB

Cout

Y

Cout

Loss
function…

Layer 1 Layer L

16

Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

XT = Y W

Weight Gradient Computation
Cout

B
B

Cin

Cout

Cin

● DNN backward propagation involves two matrix multiplications

 XWT
 Y =

Data Gradient Computation
Cout

B Cout

Cin

B

Cin

17

Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

 W

Weight Gradient Updates

● DNN backward propagation involves two matrix multiplications

 W
Cout

Cin -η✕ W’ =

Data Gradient Computations

dReLU/dx Y

Cout

B Y

18

Two Types of Parallelism

256

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass 64

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

64

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

64

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

64

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

● Data is partitioned
and allocated equally
among the GPUs.

● Each GPU will
process
independently.

19

Distributed DNN Training: Data Parallelism
● To train DNN in a distributed fashion, we need to batchify the training datasets.
● Assume a batch size of b∈B, x denotes a batch of training dataset.
● Let η represent the learning rate. wt represents the weight at t.
● We assume that the data will be distributed in an independent and identically distributed

(IID) fashion.

Loss function Weight update

20

Parameter Server
● A parameter server is a distributed system used to manage and synchronize the

parameters (weights) of a machine learning model during training, especially in
large-scale and distributed training scenarios.

64 64

64 64

A total batch size of 256

Step 1

64 64

64 64

Step 2

Weight
update

Weight
update

Weight
update

Weight
update

Li, Mu, et al. "Scaling distributed machine learning with the parameter server." 11th USENIX Symposium on
operating systems design and implementation (OSDI 14). 2014.

21

Parameter Server
Step 3

Aggregate

Step 4

● Total amount of communication: 2(N-1)G.
● N is the number of nodes, G is the size of the weight gradient.
● If a worker node fails, other nodes can continue training without significant disruption. But PS

scheme is not scalable, the central node can not handle all the servers, as the number of
nodes increases.

22

Parameter Server

● To improve performance, we can deploy multiple parameter servers as backup nodes
● However, this approach introduces additional computation and communication

overhead.

23

All Reduce
● All-reduce is a communication operation widely used in distributed deep neural

network (DNN) training to synchronize and aggregate data across multiple
computing nodes or devices.

● Detailed training steps:
○ Forward Pass: Each node (e.g., GPU) computes the forward pass of the neural network

independently using its local mini-batch of data.
○ Backward Pass: Each node computes the gradients of the loss with respect to the model

parameters.
○ All-Reduce Step: The gradients from all nodes are summed together using the all-reduce

operation. This summed gradient is then broadcast to all nodes.
○ Parameter Update: Each node updates its local copy of the model parameters using the

aggregated gradients.

24

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4

Layer 4

Layer 3

Layer 2

Layer 1

● Assume a neural network with four layers.
● Each node has been assigned with an

equivalent amount of training dataset.
● All the nodes have finished training using

their own local training dataset.

25

Ring All-Reduce

● Nodes are arranged in a ring topology, and each
node passes a portion of its data to its neighbor
in a circular fashion. This continues until all
nodes have the complete reduced data.

● Each node has identical amounts of workload.

Node 1 Node 2 Node 3 Node 4

26

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

27

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4

● The end of share-reduce
phase.

28

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

29

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

● Total amount of communication: 2(N-1)G.
● N is the number of nodes, G is the size of the weight gradient.

30

Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
ACM symposium on operating systems principles. 2019.

● The communication overhead for many of these models is high despite using multi-GPU servers.
● Applications distributed across multi-GPU servers are bottlenecked by slower inter-server links, as

evidenced by communication overheads spiking and then plateauing when training scales out to multiple
servers.

31

Communication Reduction for Distributed Training

Lin, Yujun, et al. "Deep gradient compression: Reducing the communication bandwidth for distributed training." arXiv
preprint arXiv:1712.01887 (2017).

● We reduce the communication bandwidth by sending only the important gradients
(magnitude > thres).

● The accumulated weight gradient of each layer is transmitted only when its value is larger
than a threshold.

32

Communication Reduction for Distributed Training

● The gradient is collected locally, only
gradient with high magnitude are sent
to the central server for model
updating.

● Run-length encoding is utilized to
compress the sparse gradient.

33

Two Types of Parallelism

256

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

● Data is partitioned
and allocated equally
among the GPUs.

● Each GPU will
process
independently.

256 256

256256
Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

34

Distributed DNN Training: Model Parallelism

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

● The peak memory also becomes smaller by N
times, where N is the number of devices.

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

256 256

256256

Loss

● The peak memory usage can be further reduced by
buffering only the inputs of each layer block and
recomputing the intermediate results when needed.

35

Underutilization During Training
Fo

rw
ar

d
pa

ss
Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

Fo
rw

ar
d

pa
ss

Loss B
ackw

ard pass

256 256

256256

● GPU resources are often underutilized during
training, primarily due to the overhead and
inefficiencies introduced by model parallelism in
the DNN training process.

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

36

Distributed DNN Training: Model Parallelism

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

● The naive model parallelism
strategy leads to severe
under-utilization due to the
sequential dependency of the
network.

● GPipe first divides every
mini-batch of size N into M
equal micro-batches, enabling
different accelerators to work
on different micro-batches
simultaneously.

37

Evaluation Results

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural
information processing systems 32 (2019).

● Gpipe achieves different levels of acceleration under different
number of devices and number of microbatches.

38

Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
ACM symposium on operating systems principles. 2019.

● It will be beneficial to pipeline-parallel
assignment and achieve temporal overlap of
computation and activation / gradient
communication.

39

Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
ACM symposium on operating systems principles. 2019.

● In this paper, we propose PipeDream, a system that uses Pipeline to enable faster DNN training by
combining intra-batch parallelism with inter-batch parallelization.

40

Model Parallelism: PipeDream

● PipeDream’s automated mechanism to
partition DNN layers into stages.

● PipeDream first profiles the input DNN, to
get estimates for each layer’s compute
time and output size.

● Using these estimates, PipeDream’s
optimizer partitions layers across available
machines, which is then executed by
PipeDream’s runtime.

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
ACM symposium on operating systems principles. 2019.

41

Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
ACM symposium on operating systems principles. 2019.

42

Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th
ACM symposium on operating systems principles. 2019.

43

Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● For all minibatch sizes we set the learning
rate as a linear function of the minibatch
size and apply a simple warmup phase for
the first few epochs of training.

● Using this simple approach, accuracy of our
models is invariant to minibatch
size (up to an 8k minibatch size).

● This enables a linear reduction in training
time with 90% efficiency as we scale to
large minibatch sizes, allowing us to train
an accurate 8k minibatch ResNet-50 model
in 1 hour on 256 GPUs.

44

Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● Our goal is to use large minibatches in place of small minibatches while maintaining training
and generalization accuracy.
○ CNNs typically use batch sizes ranging from 64 to 1K.

○ BERT models employ 8K–32K global batches with the LAMB optimizer and layerwise adaptive
scaling.

○ Large language models (LLMs) are trained in large-scale distributed settings with batch sizes of
8K–64K tokens per step.

●

45

Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning
rate by k.

● As the batch size increases, the number of iterations reduces, we need to increase the
learning rate. If , then the two equations are equivalent.

46

Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour
● At the start of training, model parameters are usually randomly initialized and uncalibrated. A high

learning rate at this point can cause large, erratic gradient updates that push parameters into
unstable regions, leading to exploding losses or divergence.

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● We start from a learning rate of η and increment it by a constant amount at each iteration such that
it reaches kη after 5 epochs. After the warm up, we go back to the original learning rate schedule.

47

Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning

48

BranchyNet
● Data samples are not equal in

their recognition difficulties.

● For the easy samples, they only
needs to be processed with a
few layers before generating the
correct results.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from
deep neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.

49

BranchyNet
● During Inference, a confidence score is computed at each

exit point, if greater than a predefined threshold, then the
output is computed locally, leading to a faster inference.

● The confidence score is defined as:

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep
neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.

50

BranchyNet
● To train the Branchy-style DNN, we can sum the cross-entropy loss at each local exit

points, and train them jointly.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep
neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.

Layer 4

Layer 3

Layer 2

Layer 1

Loss
w1 w2

w3

w4

51

Distributed Deep Neural Networks over the
Cloud, the Edge and End Devices

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017.
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH
Computer Architecture News 45.1 (2017): 615-629.

● We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies,
consisting of the cloud, the edge (fog) and end devices.

52

DDNN
● Each edge device is implemented

with a local DNN for local inference.

● The results from each local DNN is
first aggregated locally.

● If the local exit is not confident, the
activation output after the last
convolutional layer from each end
device is sent to the cloud aggregator
for further processing.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017.
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH
Computer Architecture News 45.1 (2017): 615-629.

53

ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

Processing time for VGG16

● Earlier layers take much longer to process than the later layers.

54

ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

● In channelwise partition, each node
needs to exchange their partially
accumulated output feature maps to
produce final output feature maps,
which leads to a significant
communication overhead.

ifmaps ofmapsFilter 1

...

...

...

...

...

C/2

C/2

...
...

K/2

K/2

Filter K

W

H
R

U

N

M

Device 1

Device 2

Convolution

55

ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

● The input will partitioned in
spatial dimension and
distribute over multiple
devices.

● The weight will duplicate and
save on each device.

ifmaps

...
...

C/2

C/2

W

H
...

...Device B

W/2
H/2

...
...Device A

W/2
H/2

...
...Device C

W/2
H/2

...
...Device D

W/2
H/2

Weight

Weight

Weight

Weight

...
...

W/2
H/2

...
...

W/2
H/2

...
...

W/2
H/2

...
...

W/2
H/2

ifmaps ofmaps

56

ADCNN
ifmap

A B

DC

data halo

A B

DC

A B

DC
Data halo transmission among tiles

0.2

0.6

0.9

0.2

0.6

0.4 0.3

0.4 0.3

0.9

(c)(b)(a)

● In spatial partition, each tile needs to transmit their data halo in order to compute the correct result.

57

ADCNN
A B

DC

Normal Spatial Partition

0.2

0.6

0.9

0.2

0.6

0.4 0.3

0.4 0.3

0.9

A B

DC

● The cross-tile information transfer can be eliminated by padding the edge pixels with zeros.

0.0

0.0

0.0

0.0 0.0

Fully Decomposable Spatial Partition
(FDSP)

58

ADCNN

Progressive
Retraining

Dog

Original CNN model Output CNN model

Central
node

Edge device cluster

Tiles

Input

...

Step 1 Step 2
...

Conv
node

...

...... ...

Conv
node

...... ...
...

59

Evaluation Results
● We implement ADCNN system with nine

identical Raspberry Pi devices which simulate
the edge devices. Among these nine devices,
eight are used as Conv nodes, and the rest
one is used as the Central node.

● Baselines:
○ Single device scheme
○ Remote cloud scheme

● ADCNN decreases the average processing
latency by 6.68x and 4.42x, respectively.

60

MoDNN

Mao, Jiachen, et al. "Modnn: Local distributed mobile computing system for deep neural network." Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017.

61

Distributed Inference for Transformer

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT

● Input dimension: L✖E
● Partitioning across dimension L requires all-reduce operation for

QKT computation.
● Partitioning across dimension E (headwise partition) is better:

○ Q, K, V tensors are broken into multiple components along the
embedding dimension.

■ (B,L,E) ✖ (E✖E) → (B✖L✖E)
■ (B,L,E) → (B, M, L, E/M) → (B, M , L, D) , where

D=E/M
○ All the following operations can be performed independently

over each head M.
■ QK丅→(B, M, L✖D) ✖ (B, M, D✖L) → (B, M, L✖L)
■ Softmax(QK丅) → (B, M, L✖L)
■ Softmax(QK丅) ✖ V → (B, M, L✖L) ✖ (B, M, L✖D) →

(B, M, L✖D) → (B✖L✖E)
●

62

Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning

63

Federated Learning
● Training data: (x1,y1), (x2,y2), (x3,y3), (x4,y4)

Train

(x1,y1) (x2,y2) (x3,y3) (x4,y4)
Train Train Train

||y1-x1||2 ||y2-x2||2 ||y3-x3||2 ||y4-x4||2

● Non-iid training data distribution
● Heterogeneity among the edge

devices
● Communication error

64

Federated Learning

Central
node

Edge
nodes

Aggregate

Train Train Train Train

● Federated learning is a machine learning technique
that allows the training of models across multiple
decentralized nodes holding local data samples,
without exchanging their data.

● This approach enhances privacy, user can train the
powerful DNN model without sharing the dataset.

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

65

FedAvg

Global
model

● A global model is initialized on the central node and sent
to all participating nodes .

Step 1

For each i

Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

66

FedAvg

Global
model

Step 2

● Each node i trains the global model locally
using its own data for a few epochs.

● The length of local training process may vary.

Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

67

FedAvg

● Local updates are sent from each node to the central
node.

Aggregate

Step 3
Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

68

FedAvg

Aggregate

Step 4
● The central node aggregates the local updates

to update the global model.
Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

69

Federated Learning Problems: Non-IID
● However, in FL, the data distributed across different devices or clients is not drawn from

the same statistical distribution.

● Unlike the scenario distributed training, where the training data are randomly distributed.
For FL, the data stored in each device is highly biased.

Cloud

User
devices

Aggregate● This may lead to significant accuracy degradation
for the global model.

70

Federated Learning Problems: Heterogeneity

Cloud

User
devices

Aggregate

● Different edge device may have different
processing speed.

● This will cause the total latency of each training
round bottlenecked by the straggler, leading to a
slow convergence of the training process.

71

Federated Learning Problems:
Communication

Cloud

User
devices

Aggregate

Comm
error

● The communication between edge devices and
central cloud may incur transmission loss or error.

● This will impact the training latency and accuracy.

72

Federated Learning Problems: Privacy

Cloud

User
devices

Aggregate

● The attacker can leverage the transmitted gradient
to reconstruct the original input training data.

● This will lead to privacy leakage.

73

Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● The training sets are evenly partitioned
into 10 clients.

● For IID setting, each client is randomly
assigned a uniform distribution over 10
classes.

● For non-IID setting, the data is sorted
by class and divided to create two
extreme cases: (a) 1-class non-IID,
where each client receives data
partition from only a single class, and
(b) 2-class non-IID, where the sorted
data is divided into 20 partitions and
each client is randomly assigned 2
partitions from 2 classes.

74

Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● We propose a data-sharing strategy to improve FedAvg with non-IID data by creating a small
subset of data which is globally shared between all the edge devices.

● Experiments show that test accuracy can be increased by ~30% on CIFAR-10 dataset with only
5% globally shared data.

75

FedProx

● We add an extra term to minimize the l2
distance between the initial weight wt and
the learned weight w.

● This loss ensures that the learnt w is not
too different from the original w.

Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2
(2020): 429-450.

76

Federated Learning Problems: Heterogeneity

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

DNN mapping

Cloud

Compete
DNN model

User
devices

● End devices will have heterogeneous
system configuration.

● HeteroFL partitions and assigns the
DNN based on the processing power
of each device.

● Each device only train a subset of the
DNN model.

77

HeteroFL

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

● Each edge device will be assigned with
part of the neural network to perform local
training based on its computational
complexity.

78

Federated Learning Problems:
Communication

Luping, W.; Wei, W.; and Bo, L. 2019. Cmfl: Mitigating communication overhead for federated learning. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), 954–964. IEEE.

● uj denotes the sign of the model weight after local updates.
● Our solution dynamically identifies relevant local updates and excludes

those irrelevant from being.
● Only the local device with high relevance will transmit their weight to the

central server.

79

FedMARL

● Our objective is to maximize the accuracy of the global model while minimizing the total processing latency
and communication cost.

● w1,w2,w3 are the importance of the objectives controlled by the FL application designers.
● The FL optimization problem is difficult to solve directly. We instead model the problem as a MARL

problem.

Final model
Accuray

Total Training
Latency Total Bandwidth

Client
Selection

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in
federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.

80

FedMARL

● In FedMarl, each client device n relies on an MARL agent at the central server to make its
participation decision. Each MARL agent contains a simple two-layer Multi-layer perceptron (MLP)
that is cheap to implement.

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in
federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.

81

FedMARL

● Every random dropping is better than FedAvg.
● FedMarl is much better than random dropping and FedAvg.

