
Lecture 09: 
Distributed Machine Learning for 

Training and Inference
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Some Notes
● Project proposals have been graded, and feedback has been 

posted.
● Lab 2 grades will be released this weekend.
● Lab 3 is due in two weeks.
● We’ll also hold a round of project meetings to check on each 

team’s progress.
● Change on Course Schedule
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Recap
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Speculative Decoding
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Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning
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Speculative Decoding
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● Speculative decoding enables lossless token generation with low latency.

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding." 
International Conference on Machine Learning. PMLR, 2023.
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Speculative Decoding
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Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding." 
International Conference on Machine Learning. PMLR, 2023.
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Speculative Decoding

● If the token is incorrect, the target model provides the correct token to the draft model to help it 
generate subsequent tokens more accurately.

● If the amount of tokens that pass the verification is too low, then it is possible that speculative 
decoding is slower than autoregressive baseline.
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Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding." 
International Conference on Machine Learning. PMLR, 2023.
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LLM Decoding

● We can simply select the token with the highest score. But better results are achieved if 
the model considers other words as well. So a better strategy is to sample a word from 
the entire list using the score as the probability of selecting that word.
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Speculative Decoding

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding." 
International Conference on Machine Learning. PMLR, 2023.

● To increase the diversity of the LLM output, a better strategy is to 
sample a word from the entire list using the score as the probability of 
selecting that word.

● Let p(x), q(x) denote the probability density function specified by the 
target and draft LLM

● To sample x ∼ p(x), we instead sample x ∼ q(x), keeping it if q(x) ≤ p(x), 
and in case q(x) > p(x) we reject the sample with probability 1− p(x)/q(x) 
and sample x again from an adjusted distribution p’(x) = norm(max(0, 
p(x) − q(x))) instead.  
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Speculative Decoding

● Speculative decoding does not save computation, 
but greatly reduce the memory traffic by reducing 
the number of memory reads, further reducing the 
overall latency.
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SpecInfer

Miao, Xupeng, et al. "SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative 
Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).
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Parallel Speculative Decoding

Liu, Tianyu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. "Parallel speculative decoding with adaptive draft 
length." arXiv preprint arXiv:2408.11850 (2024).

● PEARL is a parallel inference framework based on speculative decoding which utilizes pre-verify 
and post-verify to achieve adaptive draft length.

● The draft model continues to decode during the verification stage.
● If the verification fails, the windows size will become 1 in the next cycle.
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Medusa

Cai, Tianle, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. "Medusa: Simple llm 
inference acceleration framework with multiple decoding heads." arXiv preprint arXiv:2401.10774 (2024).

● Adding extra decoding 
heads to predict multiple 
subsequent tokens in 
parallel. 
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Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning
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Forward Pass for Linear Layer

● The fully-connected layer during the forward propagation can be converted into 
matrix multiplications.
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B

Cin

Cin

Cout

B

Cout

B: batch size Cin: input channels Cout: output channels 

YB

Cout

Y

Cout

Loss
function…

Layer 1 Layer L



16

Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

XT =  Y    W

Weight Gradient Computation
Cout

B
B

Cin

Cout

Cin

● DNN backward propagation involves two matrix multiplications
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Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

   W

Weight Gradient Updates

● DNN backward propagation involves two matrix multiplications
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Two Types of Parallelism
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● Data is partitioned 
and allocated equally 
among the GPUs.

● Each GPU will 
process 
independently.
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Distributed DNN Training: Data Parallelism
● To train DNN in a distributed fashion, we need to batchify the training datasets.
● Assume a batch size of b∈B, x denotes a batch of training dataset.
● Let η represent the learning rate. wt represents the weight at t.
● We assume that the data will be distributed in an independent and identically distributed 

(IID) fashion.

Loss function Weight update
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Parameter Server
● A parameter server is a distributed system used to manage and synchronize the 

parameters (weights) of a machine learning model during training, especially in 
large-scale and distributed training scenarios. 
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Li, Mu, et al. "Scaling distributed machine learning with the parameter server." 11th USENIX Symposium on 
operating systems design and implementation (OSDI 14). 2014.
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Parameter Server
Step 3

Aggregate

Step 4

● Total amount of communication: 2(N-1)G.
● N is the number of nodes, G is the size of the weight gradient.
● If a worker node fails, other nodes can continue training without significant disruption. But PS 

scheme is not scalable, the central node can not handle all the servers, as the number of 
nodes increases.
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Parameter Server

● To improve performance, we can deploy multiple parameter servers as backup nodes
● However, this approach introduces additional computation and communication 

overhead.
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All Reduce
● All-reduce is a communication operation widely used in distributed deep neural 

network (DNN) training to synchronize and aggregate data across multiple 
computing nodes or devices.

● Detailed training steps:
○ Forward Pass: Each node (e.g., GPU) computes the forward pass of the neural network 

independently using its local mini-batch of data.
○ Backward Pass: Each node computes the gradients of the loss with respect to the model 

parameters.
○ All-Reduce Step: The gradients from all nodes are summed together using the all-reduce 

operation. This summed gradient is then broadcast to all nodes.
○ Parameter Update: Each node updates its local copy of the model parameters using the 

aggregated gradients.
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Ring All-Reduce

Node 1 Node 2 Node 3 Node 4

Layer 4

Layer 3

Layer 2

Layer 1

● Assume a neural network with four layers.
● Each node has been assigned with an 

equivalent amount of training dataset.
● All the nodes have finished training using 

their own local training dataset.
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Ring All-Reduce

● Nodes are arranged in a ring topology, and each 
node passes a portion of its data to its neighbor 
in a circular fashion. This continues until all 
nodes have the complete reduced data.

● Each node has identical amounts of workload.

Node 1 Node 2 Node 3 Node 4
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Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4
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Ring All-Reduce

Node 1 Node 2 Node 3 Node 4

● The end of share-reduce 
phase.
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Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4



29

Ring All-Reduce

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

● Total amount of communication: 2(N-1)G.
● N is the number of nodes, G is the size of the weight gradient.
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Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th 
ACM symposium on operating systems principles. 2019.

● The communication overhead for many of these models is high despite using multi-GPU servers.
● Applications distributed across multi-GPU servers are bottlenecked by slower inter-server links, as 

evidenced by communication overheads spiking and then plateauing when training scales out to multiple 
servers.
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Communication Reduction for Distributed Training

Lin, Yujun, et al. "Deep gradient compression: Reducing the communication bandwidth for distributed training." arXiv 
preprint arXiv:1712.01887 (2017).

● We reduce the communication bandwidth by sending only the important gradients 
(magnitude > thres).

● The accumulated weight gradient of each layer is transmitted only when its value is larger 
than a threshold.
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Communication Reduction for Distributed Training

● The gradient is collected locally, only 
gradient with high magnitude are sent 
to the central server for model 
updating.

● Run-length encoding is utilized to 
compress the sparse gradient.
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Two Types of Parallelism
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● Data is partitioned 
and allocated equally 
among the GPUs.

● Each GPU will 
process 
independently.
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Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural 
information processing systems 32 (2019).
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Distributed DNN Training: Model Parallelism

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural 
information processing systems 32 (2019).

● The peak memory also becomes smaller by N 
times, where N is the number of devices.
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● The peak memory usage can be further reduced by 
buffering only the inputs of each layer block and 
recomputing the intermediate results when needed.
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Underutilization During Training
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● GPU resources are often underutilized during 
training, primarily due to the overhead and 
inefficiencies introduced by model parallelism in 
the DNN training process.

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural 
information processing systems 32 (2019).
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Distributed DNN Training: Model Parallelism

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural 
information processing systems 32 (2019).

● The naive model parallelism
strategy leads to severe 
under-utilization due to the 
sequential dependency of the 
network.

● GPipe first divides every 
mini-batch of size N into M 
equal micro-batches, enabling 
different accelerators to work 
on different micro-batches 
simultaneously.
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Evaluation Results

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural 
information processing systems 32 (2019).

● Gpipe achieves different levels of acceleration under different 
number of devices and number of microbatches.
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Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th 
ACM symposium on operating systems principles. 2019.

● It will be beneficial to  pipeline-parallel 
assignment and achieve temporal overlap of 
computation and activation / gradient 
communication.



39

Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th 
ACM symposium on operating systems principles. 2019.

● In this paper, we propose PipeDream, a system that uses Pipeline to enable faster DNN training by 
combining intra-batch parallelism with inter-batch parallelization.
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Model Parallelism: PipeDream

● PipeDream’s automated mechanism to 
partition DNN layers into stages. 

● PipeDream first profiles the input DNN, to 
get estimates for each layer’s compute 
time and output size. 

● Using these estimates, PipeDream’s 
optimizer partitions layers across available 
machines, which is then executed by 
PipeDream’s runtime.

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th 
ACM symposium on operating systems principles. 2019.
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Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th 
ACM symposium on operating systems principles. 2019.
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Model Parallelism: PipeDream

Narayanan, Deepak, et al. "PipeDream: Generalized pipeline parallelism for DNN training." Proceedings of the 27th 
ACM symposium on operating systems principles. 2019.
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Accurate, Large Minibatch SGD: Training 
ImageNet in 1 Hour

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● For all minibatch sizes we set the learning 
rate as a linear function of the minibatch 
size and apply a simple warmup phase for 
the first few epochs of training.

● Using this simple approach, accuracy of our 
models is invariant to minibatch
size (up to an 8k minibatch size).

● This enables a linear reduction in training 
time with 90% efficiency as we scale to 
large minibatch sizes, allowing us to train 
an accurate 8k minibatch ResNet-50 model 
in 1 hour on 256 GPUs.
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Accurate, Large Minibatch SGD: Training 
ImageNet in 1 Hour

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● Our goal is to use large minibatches in place of small minibatches while maintaining training 
and generalization accuracy.
○ CNNs typically use batch sizes ranging from 64 to 1K.

○ BERT models employ 8K–32K global batches with the LAMB optimizer and layerwise adaptive 
scaling.

○ Large language models (LLMs) are trained in large-scale distributed settings with batch sizes of 
8K–64K tokens per step.

●
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Accurate, Large Minibatch SGD: Training 
ImageNet in 1 Hour

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning 
rate by k.

● As the batch size increases, the number of iterations reduces, we need to increase the 
learning rate. If                                        , then the two equations are equivalent.
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Accurate, Large Minibatch SGD: Training 
ImageNet in 1 Hour
● At the start of training, model parameters are usually randomly initialized and uncalibrated. A high 

learning rate at this point can cause large, erratic gradient updates that push parameters into 
unstable regions, leading to exploding losses or divergence.

Goyal, P. "Accurate, large minibatch SGD: training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).

● We start from a learning rate of η and increment it by a constant amount at each iteration such that 
it reaches kη after 5 epochs. After the warm up, we go back to the original learning rate schedule.
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Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning
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BranchyNet
● Data samples are not equal in 

their recognition difficulties.

● For the easy samples, they only 
needs to be processed with a 
few layers before generating the 
correct results.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from 
deep neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.
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BranchyNet
● During Inference, a confidence score is computed at each 

exit point, if greater than a predefined threshold, then the 
output is computed locally, leading to a faster inference.

● The confidence score is defined as:

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep 
neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.
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BranchyNet
● To train the Branchy-style DNN, we can sum the cross-entropy loss at each local exit 

points, and train them jointly.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep 
neural networks." 2016 23rd international conference on pattern recognition (ICPR). IEEE, 2016.
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Loss
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Distributed Deep Neural Networks over the 
Cloud, the Edge and End Devices

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the 
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017.
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH 
Computer Architecture News 45.1 (2017): 615-629.

● We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, 
consisting of the cloud, the edge (fog) and end devices.
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DDNN
● Each edge device is implemented 

with a local DNN for local inference.

● The results from each local DNN is 
first aggregated locally.

● If the local exit is not confident, the 
activation output after the last 
convolutional layer from each end 
device is sent to the cloud aggregator 
for further processing.

Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Distributed deep neural networks over the cloud, the 
edge and end devices." 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, 2017.
Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud and mobile edge." ACM SIGARCH 
Computer Architecture News 45.1 (2017): 615-629.
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ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network 
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

Processing time for VGG16

● Earlier layers take much longer to process than the later layers.
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ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network 
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

● In channelwise partition, each node 
needs to exchange their partially 
accumulated output feature maps to 
produce final output feature maps, 
which leads to a significant 
communication overhead.
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ADCNN

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "Adaptive distributed convolutional neural network inference at the network 
edge with ADCNN." Proceedings of the 49th International Conference on Parallel Processing. 2020.

● The input will partitioned in 
spatial dimension and 
distribute over multiple 
devices.

● The weight will duplicate and 
save on each device.
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ADCNN
ifmap
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● In spatial partition, each tile needs to transmit their data halo in order to compute the correct result.
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ADCNN
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ADCNN
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Evaluation Results
● We implement ADCNN system with nine 

identical Raspberry Pi devices which simulate 
the edge devices. Among these nine devices, 
eight are used as Conv nodes, and the rest 
one is used as the Central node.

● Baselines:
○ Single device scheme
○ Remote cloud scheme

● ADCNN decreases the average processing 
latency by 6.68x and 4.42x, respectively.
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MoDNN

Mao, Jiachen, et al. "Modnn: Local distributed mobile computing system for deep neural network." Design, Automation & 
Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017.
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Distributed Inference for Transformer

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT

● Input dimension: L✖E
● Partitioning across dimension L requires all-reduce operation for 

QKT computation.
● Partitioning across dimension E (headwise partition) is better:

○ Q, K, V tensors are broken into multiple components along the 
embedding dimension.

■ (B,L,E) ✖ (E✖E) →  (B✖L✖E)
■ (B,L,E) →  (B, M, L, E/M)  → (B, M , L, D) , where 

D=E/M
○ All the following operations can be performed independently 

over each head M.
■ QK丅→(B, M, L✖D) ✖ (B, M, D✖L) →  (B, M, L✖L) 
■ Softmax(QK丅) →  (B, M, L✖L) 
■ Softmax(QK丅) ✖ V → (B, M, L✖L) ✖ (B, M, L✖D) → 

(B, M, L✖D) → (B✖L✖E) 
●
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Topics
● Speculative Decoding (Continue)
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning
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Federated Learning
● Training data: (x1,y1), (x2,y2), (x3,y3), (x4,y4)

Train

(x1,y1) (x2,y2) (x3,y3) (x4,y4)
Train Train Train

||y1-x1||2 ||y2-x2||2 ||y3-x3||2 ||y4-x4||2

● Non-iid training data distribution
● Heterogeneity among the edge 

devices
● Communication error
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Federated Learning

Central 
node

Edge
nodes

Aggregate

Train Train Train Train

● Federated learning is a machine learning technique 
that allows the training of models across multiple 
decentralized nodes holding local data samples, 
without exchanging their data. 

● This approach enhances privacy, user can train the 
powerful DNN model without sharing the dataset.

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

Global 
model

● A global model is initialized on the central node and sent 
to all participating nodes .

Step 1

For each i

Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

Global 
model

Step 2

● Each node i trains the global model locally 
using its own data for a few epochs. 

● The length of local training process may vary.

Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

● Local updates are sent from each node to the central 
node. 

Aggregate

Step 3
Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

Aggregate

Step 4
● The central node aggregates the local updates 

to update the global model.
Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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Federated Learning Problems: Non-IID
● However, in FL, the data distributed across different devices or clients is not drawn from 

the same statistical distribution. 

● Unlike the scenario distributed training, where the training data are randomly distributed. 
For FL, the data stored in each device is highly biased.

 
Cloud

User
devices

Aggregate● This may lead to significant accuracy degradation 
for the global model.
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Federated Learning Problems: Heterogeneity

Cloud

User
devices

Aggregate

● Different edge device may have different 
processing speed.

● This will cause the total latency of each training 
round bottlenecked by the straggler, leading to a 
slow convergence of the training process.



71

Federated Learning Problems: 
Communication

Cloud

User
devices

Aggregate

Comm 
error

● The communication between edge devices and 
central cloud may incur transmission loss or error.

● This will impact the training latency and accuracy.
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Federated Learning Problems: Privacy

Cloud

User
devices

Aggregate

● The attacker can leverage the transmitted gradient 
to reconstruct the original input training data.

● This will lead to privacy leakage.
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Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● The training sets are evenly partitioned 
into 10 clients. 

● For IID setting, each client is randomly 
assigned a uniform distribution over 10 
classes. 

● For non-IID setting, the data is sorted 
by class and divided to create two 
extreme cases: (a) 1-class non-IID, 
where each client receives data 
partition from only a single class, and 
(b) 2-class non-IID, where the sorted 
data is divided into 20 partitions and 
each client is randomly assigned 2 
partitions from 2 classes.
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Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● We propose a data-sharing strategy to improve FedAvg with non-IID data by creating a small 
subset of data which is globally shared between all the edge devices. 

● Experiments show that test accuracy can be increased by ~30% on CIFAR-10 dataset with only 
5% globally shared data.
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FedProx

● We add an extra term to minimize the l2 
distance between the initial weight wt and 
the learned weight w. 

● This loss ensures that the learnt w is not 
too different from the original w.

Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2 
(2020): 429-450.
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Federated Learning Problems: Heterogeneity

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for 
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

DNN mapping

Cloud

Compete 
DNN model

User
devices

● End devices will have heterogeneous 
system configuration.

● HeteroFL partitions and assigns the 
DNN based on the processing power 
of each device.

● Each device only train a subset of the 
DNN model.
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HeteroFL

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for 
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

● Each edge device will be assigned with 
part of the neural network to perform local 
training based on its computational 
complexity.
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Federated Learning Problems: 
Communication

Luping, W.; Wei, W.; and Bo, L. 2019. Cmfl: Mitigating communication overhead for federated learning. In 2019 IEEE 39th 
International Conference on Distributed Computing Systems (ICDCS), 954–964. IEEE.

● uj denotes the sign of the model weight after local updates.
● Our solution dynamically identifies relevant local updates and excludes 

those irrelevant from being.
● Only the local device with high relevance will transmit their weight to the 

central server.
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FedMARL

● Our objective is to maximize the accuracy of the global model while minimizing the total processing latency 
and communication cost.

● w1,w2,w3 are the importance of the objectives controlled by the FL application designers.
● The FL optimization problem is difficult to solve directly. We instead model the problem as a MARL 

problem.

Final model 
Accuray

Total Training 
Latency Total Bandwidth

Client
Selection

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in 
federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.
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FedMARL

● In FedMarl, each client device n relies on an MARL agent at the central server to make its 
participation decision. Each MARL agent contains a simple two-layer Multi-layer perceptron (MLP) 
that is cheap to implement.

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in 
federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.
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FedMARL

● Every random dropping is better than FedAvg.
● FedMarl is much better than random dropping and FedAvg.


